(14分)證明下列不等式:

(1)都是正數(shù),且,求證:;

(2)設(shè)實(shí)數(shù)滿足,且,求證:

 

【答案】

(1);

(2)

【解析】證明(1)左…3分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052102242473433359/SYS201205210227475000418095_DA.files/image004.png">,所以   ……………………………………………5分

所以左  ………7分

(另證:令

,即原不等式得證)

(2)

  ……………………………………………………………9分

 …12分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052102242473433359/SYS201205210227475000418095_DA.files/image016.png">

即原不等式得證    ………………………………………………………………..14分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

證明下列不等式.
(1)求證:當(dāng)a、b、c為正數(shù)時(shí),(a+b+c)(
1
a
+
1
b
+
1
c
)≥9.
(2)已知n≥0,試用分析法證明:
n+2
-
n+1
n+1
-
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
x2+1

(1)求出函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈(-
3
4
,+∞)
時(shí),證明函數(shù)y=f(x)圖象在點(diǎn)(
1
3
,
3
10
)
處切線的下方;
(3)利用(2)的結(jié)論證明下列不等式:“已知a,b,c∈(-
3
4
,+∞)
,且a+b+c=1,證明:
a
a2+1
+
b
b2+1
+
c
c2+1
9
10
”;
(4)已知a1,a2,…,an是正數(shù),且a1+a2+…+an=1,借助(3)的證明猜想
n
k=1
ak
a
2
k
+1
的最大值.(只指出正確結(jié)論,不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明下列不等式:
(1)對(duì)任意的正實(shí)數(shù)a,b,有
1
1+a
1
1+b
-
a-b
(1+b)2

(2)
C
0
n
50
50+1
+
C
1
n
51
51+1
+
C
2
n
52
52+1
+…+
C
n
n
5n
5n+1
2n5n
3n+5n
,n∈N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•太原模擬)證明下列不等式:
(1)用分析法證明:
3
+
8
>1+
10
;
(2)已知a,b,c是不全相等的正數(shù),證明a2+b2+c2>ab+bc+ca.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明下列不等式:
(1)若x,y,z∈R,a,b,c∈R+,則
b+c
a
x2+
c+a
b
y2+
a+b
c
z2≥2(xy+yz+zx)
(2)若x,y,z∈R+,且x+y+z=xyz,則
y+z
x
+
z+x
y
+
x+y
z
≥2(
1
x
+
1
y
+
1
z

查看答案和解析>>

同步練習(xí)冊(cè)答案