【題目】如圖,已知矩形ABCD中,AB=10,BC=6,將矩形沿對角線BD△ABD折起,使A移到A1點,且A1在平面BCD上的射影O恰在CD上,即A1O⊥平面DBC

)求證:BC⊥A1D;

)求證:平面A1BC⊥平面A1BD;

)求點C到平面A1BD的距離.

【答案】)見解析;()見解析;(

【解析】

試題()由線面垂直得A1O⊥BC,再由BC⊥DC,能證明BC⊥A1D

)由BC⊥A1D,A1D⊥A1B,得A1D⊥平面A1BC,由此能證明平面A1BC⊥平面A1BD

)由=,能求出點C到平面A1BD的距離.

證明:(∵A1O⊥平面DBC,∴A1O⊥BC,

∵BC⊥DCA1O∩DC=O,

∴BC⊥平面A1DC,∴BC⊥A1D

∵BC⊥A1DA1D⊥A1B,BC∩A1B=B

∴A1D⊥平面A1BC,

∵A1D平面A1BD

平面A1BC⊥平面A1BD

解:()設(shè)C到平面A1BD的距離為h,

=,

=

=SDBC,,

C到平面A1BD的距離為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角AB,C所對的邊分別為a,b,c,且abc=8.

(1)若a=2,b,求cosC的值;

(2)若sinAcos2+sinB·cos2=2sinC,且△ABC的面積SsinC,求ab的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,其中左焦點(-2,0).

1) 求橢圓C的方程;

2) 若直線y=x+m與橢圓C交于不同的兩點AB,且線段AB的中點M在圓x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機抽取某中學(xué)甲、乙兩班各10名同學(xué),測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.

(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;

(2)計算甲班的樣本方差;

(3)現(xiàn)從乙班這10名同學(xué)中隨機抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù).

1)若,求函數(shù)在區(qū)間上的最大值;

2)若存在,使得關(guān)于x的方程有三個不相等的實數(shù)解,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓ab0)的離心率,過點A0-b)和Ba,0)的直線與原點的距離為

1)求橢圓的方程.

2)已知定點E-1,0),若直線ykx2k≠0)與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓 的離心率為,上、下頂點分別為、,點在橢圓上,且異于點、,直線、與直線 分別交于點,面積的最大值為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)求線段的長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象如圖所示.

1)求函數(shù)的解析式及其對稱軸方程;

2)求函數(shù)在區(qū)間上的最大值和最小值,并指出取得最值時的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱底面,,分別為棱,,的中點.

1)求證:;

2)若,求三棱錐的體積;

3)判斷直線與平面的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案