精英家教網 > 高中數學 > 題目詳情
在O點測量到遠處有一物體在作等速直線運動,開始時該物位于P點,一分鐘后,其位置在Q點,且∠POQ=90°,再過一分鐘后,該物體位于R點,且∠QOR=30°,則tan2∠OPQ 等于( 。
分析:在△ORQ與△OPQ中,利用正弦定理分別求OQ,即可求tan∠OPQ,從而可得結論.
解答:解:設PQ=x,則QR=x,
∵∠POQ=90°,∠QOR=30°,∴∠OPQ+∠R=60°,即∠R=60°-∠OPQ,
在△ORQ中,由正弦定理得:
OQ
sinR
=
xsinR
sin30°
,即OQ=2x•sin(60°-∠OPQ);
在△OPQ中,同理可求得:OQ=xsin∠OPQ,
∴2x•sin(60°-∠OPQ)=x•sin∠OPQ,①,
由于x=PQ>0,
將①整理可得,
3
cos∠OPQ-sin∠OPQ=sin∠OPQ,即2sin∠OPQ=
3
cos∠OPQ,
∴tan∠OPQ=
3
2

∴tan2∠OPQ=
3
4

故選B.
點評:本題考查了利用正弦定理解決實際問題,求解實際問題的關鍵是要把實際問題轉化為數學問題,利用數學知識進行求解,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在O點測量到遠處有一物體在做勻速直線運動,開始時該物體位于點P,一分鐘后,其位置在Q點,且∠POQ=90°,再過二分鐘后,該物體位于R點,且∠QOR=60°,則tan2∠OPQ的值等于( 。
A、
4
9
B、
2
3
9
C、
4
27
D、以上均不正確

查看答案和解析>>

科目:高中數學 來源: 題型:

在O點測量到遠處有一物體在做勻速直線運動,開始時該物體位于P點,一分鐘后,其位置在Q點,且∠POQ=90°,再過一分鐘后,該物體位于R點,且∠QOR=30°,則tan∠OPQ的值為
3
2
3
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•臺州二模)在O點測量到遠處有一物體在作勻速直線運動,開始時該物體位于P點,一分鐘后,其位置在Q點,且∠POQ=
π
2
,再過一分鐘后,該物體位于R點,且∠QOR=
π
6
,則tan∠OPQ等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

在O點測量到遠處有一物體在做勻速直線運動,開始時該物體位于P點,一分鐘后,其位置在Q點,且∠POQ=90°,再過兩分鐘后,該物體位于R點,且∠QOR=30°,則tan∠OPQ的值為( 。
A、
3
2
B、
2
3
3
C、
3
2
D、
2
3

查看答案和解析>>

同步練習冊答案