如圖,四棱錐中,底面是直角梯形,平面,,,分別為的中點,.

(1)求證:
(2)求二面角的余弦值.

(1)證明過程詳見解析;(2).

解析試題分析:本題主要以四棱錐為幾何背景考查線線垂直、線線平行、面面垂直、線面垂直和二面角的求法,可以運用傳統(tǒng)幾何法,也可以運用空間向量法求解,突出考查空間想象能力和計算能力.方法一:第一問,由于四邊形為正方形,所以中點,在中,利用中位線得,利用面面垂直的判定得平面平面,在中,由已知得為等腰三角形,而的中點,所以得,所以得平面,而,所以平面,所以垂直面內(nèi)的線,在中,利用勾股定理得,,所以利用線面垂直的判定得平面,所以垂直面內(nèi)的線;第二問,由線面垂直平面,得面面垂直平面平面,由垂直兩個面的交線,所以平面,所以垂直面內(nèi)的線,在等腰三角形中,中點,所以,從而得平面,所以垂直面內(nèi)的線,從而得是二面角的平面角,由已知中的邊的關系得出的長度,從而得出的值,再利用平方關系得出角的余弦值;方法二:第一問,利用向量法,先建立空間直角坐標系,寫出各個點的坐標及向量的坐標,要證明,只需證明即可;第二問,利用向量法求出面的法向量,面的法向量,再利用夾角公式求余弦值.
試題解析:解法一:(Ⅰ)設,連接,
分別是、的中點,則,     1分
已知平面平面,所以平面平面,
,的中點,則,
而平面

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,矩形所在的平面與正方形所在的平面相互垂直,的中點.

(1)求證:∥平面;
(2)求證:平面⊥平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形是正方形,平面,,,分別為,的中點.

(1)求證:平面;
(2)求平面與平面所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,長方體中,,點的中點.

(1)求證:直線平面;
(2)求證:平面平面;
(3)求與平面所成的角大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐的底面是正方形,⊥平面,

(1)求證:;
(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐中,底面為梯形,, 平面,的中點

(Ⅰ)證明:
(Ⅱ)若,求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.

(1)求證:∥平面;
(2)求證:AC⊥BC1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,

(Ⅰ)求證:
(Ⅱ)設

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖長方體中,底面是正方形,的中點,是棱上任意一點.

⑴求證:;
⑵如果,求的長.

查看答案和解析>>

同步練習冊答案