函數(shù)

(1)若是增函數(shù),求a的取值范圍;

(2)求上的最大值.

解析:(1)

綜上,a的取值范圍是

(2)①

②當(dāng)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=logag(x)(a>0且a≠1)
(1)若f(x)=log
1
2
(3x-1)
,且滿足f(x)>1,求x的取值范圍;
(2)若g(x)=ax2-x,是否存在a使得f(x)在區(qū)間[
1
2
,3]上是增函數(shù)?如果存在,說明a可以取哪些值;如果不存在,請(qǐng)說明理由.
(3)定義在[p,q]上的一個(gè)函數(shù)m(x),用分法T:p=x0<x1<…<xi-1<xi<…<xn=q
將區(qū)間[p,q]任意劃分成n個(gè)小區(qū)間,如果存在一個(gè)常數(shù)M>0,使得不等式|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xi)-m(xi-1)|+…+|m(xn)-m(xn-1)|≤M恒成立,則稱函數(shù)m(x)為在[p,q]上的有界變差函數(shù).試判斷函數(shù)f(x)=log4(4x2-x)是否為在[
1
2
,3]上的有界變差函數(shù)?若是,求M的最小值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合C={f(x)|f(x)是在其定義域上的單調(diào)增函數(shù)或單調(diào)減函數(shù)},集合D={f(x)|f(x)在定義域內(nèi)存在區(qū)間[a,b],使得f(x)在a,b上的值域是[ka,kb],k為常數(shù)}.
(1)當(dāng)k=
1
2
時(shí),判斷函數(shù)f(x)=
x
是否屬于集合C∩D?并說明理由.若是,則求出區(qū)間[a,b];
(2)當(dāng)k=
1
2
0時(shí),若函數(shù)f(x)=
x
+t∈C∩D,求實(shí)數(shù)t的取值范圍;
(3)當(dāng)k=1時(shí),是否存在實(shí)數(shù)m,當(dāng)a+b≤2時(shí),使函數(shù)f(x)=x2-2x+m∈D,若存在,求出m的范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

請(qǐng)閱讀下列命題:

① 直線y=kx+1與橢圓總有兩個(gè)交點(diǎn);

② f(x)=2sin(3x-)的圖像可由f(x)=2sin3x按向量a=(-,0)平移得到;

③ 在R上連續(xù)的函數(shù)f(x)若是增函數(shù),則對(duì)于任意x0∈ R,均有(x0)>0成立;

④ 拋物線x=ay2(a≠0)的焦點(diǎn)坐標(biāo)是(,0);

以上4個(gè)命題中,真命題是____________(寫出所有真命題的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省兩地三校2010屆高三國(guó)慶聯(lián)考 題型:解答題

 (理)

函數(shù)

(1)若是增函數(shù),求a的取值范圍;

(2)求上的最大值.

 

(文)

函數(shù)

   (1)如果函數(shù)是偶函數(shù),求的極大值和極小值;

   (2)如果函數(shù)上的單調(diào)函數(shù),求的取值范圍.

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案