【題目】已知直線的參數(shù)方程為, 為參數(shù)),曲線的極坐標(biāo)方程為.

(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線的形狀;

(2)若直線經(jīng)過點,求直線被曲線截得的線段的長.

【答案】(1) 曲線表示的是焦點為,準(zhǔn)線為的拋物線;(2)8.

【解析】試題分析:(1)將曲線的極坐標(biāo)方程為兩邊同時乘以,利用極坐標(biāo)與直角坐標(biāo)之間的關(guān)系即可得出其直角坐標(biāo)方程;2由直線經(jīng)過點,可得的值,再將直線的參數(shù)方程代入曲線的標(biāo)準(zhǔn)方程,由直線參數(shù)方程的幾何意義可得直線被曲線截得的線段的長.

試題解析:(1)由可得,即

曲線表示的是焦點為,準(zhǔn)線為的拋物線.

(2)將代入,得, ,

, ,∴直線的參數(shù)方程為 (為參數(shù)).

將直線的參數(shù)方程代入,

由直線參數(shù)方程的幾何意義可知,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)絡(luò)平臺從購買該平臺某課程的客戶中,隨機抽取了100位客戶的數(shù)據(jù),并將這100個數(shù)據(jù)按學(xué)時數(shù),客戶性別等進行統(tǒng)計,整理得到如表:

學(xué)時數(shù)

男性

18

12

9

9

6

4

2

女性

2

4

8

2

7

13

4

(1)根據(jù)上表估計男性客戶購買該課程學(xué)時數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表,結(jié)果保留小數(shù)點后兩位);

(2)從這100位客戶中,對購買該課程學(xué)時數(shù)在20以下的女性客戶按照分層抽樣的方式隨機抽取7人,再從這7人中隨機抽取2人,求這2人購買的學(xué)時數(shù)都不低于15的概率.

(3)將購買該課程達到25學(xué)時及以上者視為“十分愛好該課程者”,25學(xué)時以下者視,為“非十分愛好該課程者”.請根據(jù)已知條件完成以下列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為“十分愛好該課程者”與性別有關(guān)?

非十分愛好該課程者

十分愛好該課程者

合計

男性

女性

合計

100

附:,

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與拋物線在第一象限的交點為,橢圓的左、右焦點分別為,其中也是拋物線的焦點,且.

1)求橢圓的方程;

2)過的直線(不與軸重合)交橢圓兩點,點為橢圓的左頂點,直線分別交直線于點,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學(xué)家和數(shù)學(xué)愛好者,有些猜想已經(jīng)被數(shù)學(xué)家證明,如“費馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對于每一個正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】世界互聯(lián)網(wǎng)大會是由中國倡導(dǎo)并每年在浙江省嘉興市桐鄉(xiāng)烏鎮(zhèn)舉辦的世界性互聯(lián)網(wǎng)盛會,大會旨在搭建中國與世界互聯(lián)互通的國際平臺和國際互聯(lián)網(wǎng)共享共治的中國平臺,讓各國在爭議中求共識在共識中謀合作在合作中創(chuàng)共贏.20191020日至22日,第六屆世界互聯(lián)網(wǎng)大會如期舉行,為了大會順利召開,組委會特招募了1 000名志愿者.某部門為了了解志愿者的基本情況,調(diào)查了其中100名志愿者的年齡,得到了他們年齡的中位數(shù)為34歲,年齡在歲內(nèi)的人數(shù)為15,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:

1)求,的值并估算出志愿者的平均年齡(同一組的數(shù)據(jù)用該組區(qū)間的中點值代表);

2)這次大會志愿者主要通過現(xiàn)場報名和登錄大會官網(wǎng)報名,即現(xiàn)場和網(wǎng)絡(luò)兩種方式報名調(diào)查.100位志愿者的報名方式部分?jǐn)?shù)據(jù)如下表所示,完善下面的表格,通過計算說明能

否在犯錯誤的概率不超過0.001的前提下,認(rèn)為選擇哪種報名方式與性別有關(guān)系”?

男性

女性

總計

現(xiàn)場報名

50

網(wǎng)絡(luò)報名

31

總計

50

參考公式及數(shù)據(jù):,其中.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了保障某治療新冠肺炎藥品的主要藥理成分在國家藥品監(jiān)督管理局規(guī)定的值范圍內(nèi),武漢某制藥廠在該藥品的生產(chǎn)過程中,檢驗員在一天中按照規(guī)定從該藥品生產(chǎn)線上隨機抽取20件產(chǎn)品進行檢測,測量其主要藥理成分含量(單位:mg.根據(jù)生產(chǎn)經(jīng)驗,可以認(rèn)為這條藥品生產(chǎn)線正常狀態(tài)下生產(chǎn)的產(chǎn)品的主要藥理成分含量服從正態(tài)分布Nμ,σ2.在一天內(nèi)抽取的20件產(chǎn)品中,如果有一件出現(xiàn)了主要藥理成分含量在(μ3σ,μ+3σ)之外的藥品,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對本次的生產(chǎn)過程進行檢查.

1)下面是檢驗員在224日抽取的20件藥品的主要藥理成分含量:

10.02

9.78

10.04

9.92

10.14

10.04

9.22

10.13

9.91

9.95

10.09

9.96

9.88

10.01

9.98

9.95

10.05

10.05

9.96

10.12

經(jīng)計算得xi9.96s0.19;其中xi為抽取的第i件藥品的主要藥理成分含量,i1,2,20.用樣本平均數(shù)作為μ的估計值,用樣本標(biāo)準(zhǔn)差s作為σ的估計值,利用估計值判斷是否需對本次的生產(chǎn)過程進行檢查?

2)假設(shè)生產(chǎn)狀態(tài)正常,記X表示某天抽取的20件產(chǎn)品中其主要藥理成分含量在(μ3σ,μ+3σ)之外的藥品件數(shù),求PX1)及/span>X的數(shù)學(xué)期望.

附:若隨機變量Z服從正態(tài)分布Nμ,σ2),則Pμ3σZμ+3σ≈0.9974,0.997419≈0.95.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的圖象在處的切線與直線平行.

(1)求函數(shù)的極值;

(2)若,,,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)若函數(shù)處的切線方程為,求, 的值;

(Ⅱ)若, 求函數(shù)的零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù).

1)當(dāng)時,求內(nèi)的極值;

2)設(shè)函數(shù),當(dāng)有兩個極值點時,總有,求實數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案