求函數(shù)y極值.

答案:
解析:

f(x)的定義域為Rf(x)=(2xx2)

f′(x)=··(-2x+2)

f′(x)=0,∴x=1,而x=0及x=2時,f′(x)不存在.

x=0,1,2三點將定義域分成四個區(qū)間,列表:

∴當(dāng)x=0,x=2時,有極小值0,x=1時,有極大值1.


提示:

極值點有可能是使 f′(x)=0的點,也有可能是使f′(x)不存在的點.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

求函數(shù)y極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:全優(yōu)設(shè)計選修數(shù)學(xué)-2-2蘇教版 蘇教版 題型:044

求函數(shù)y=的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省兗州市高三9月入學(xué)診斷理科數(shù)學(xué)試卷(解析版) 題型:解答題

(12分)已知函數(shù)f(x)=x3+mx2+nx-2的圖象過點(-1,-6),且函數(shù)g(x)=+6x的圖象關(guān)于y軸對稱.

(1)求m、n的值及函數(shù)y=f(x)的單調(diào)區(qū)間;(6分)

(2)若a>0,求函數(shù)y=f(x)在區(qū)間(a-1,a+1)內(nèi)的極值.(6分)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年云南省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本小題滿分12分)

已知函數(shù)f(x)=x2(x-3a)+1 (a>0,x∈R).

(I)求函數(shù)yf(x)的極值;

(II)函數(shù)yf(x)在(0,2)上單調(diào)遞減,求實數(shù)a的取值范圍;

(III)若在區(qū)間(0,+∞)上存在實數(shù)x0,使得不等式f(x0)-4a3≤0能成立,求實數(shù)a的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案