如圖,設(shè)
D、
E是△
ABC的邊
AB上的兩點,已知∠
ACD=∠
BCE,
AC=14,
AD=7,
AB=28,
CE=12.求
BC.
:=Þ△ACD∽△ABCÞ∠ABC=∠ACD=∠BCE.
∴ CE=BE=12.AE=AB-BE=16.
∴ cosA====.
∴ BC2=AC2+AB2-2AC·ABcosA=142+282-2·14·28·=72·9ÞBC=21.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
球面上有三點,其中任意兩點的球面距離都等于球的大圓周長的
,經(jīng)過這三點的小圓的周長為
,則這個球的表面積為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖所示,在四面體ABCD中,E、F分別是線段AD、BC上的點,
=
=
,AB=CD=3,EF=
,求AB、CD所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
正方形ABCD中,以對角線BD為折線,把ΔABD折起,使二面角Aˊ-BD-C為60°,求二面角B-AˊC-D的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
四邊形
是
的菱形,繞AC將該菱形折成二面角
,記異面直線
、
所成角為
,
與平面
所成角為
,當(dāng)
最大時,二面角
等于( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題14
分)如圖,五面體
中
,
.底面
是正三角形,
.
四邊形
是矩形
,
二面角
為直二面角.
(1)
在
上運動,當(dāng)
在何處時,有
∥平面
,并且
說明理由;
(2)當(dāng)
∥平面
時,求二面角
的
余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在三棱錐S-ABC中,若底面ABC是邊長等于2
的正三角形,SA與底面ABC垂直,SA=6,點M,N分別為SB,AC的中點,則異面直線MN與BC所成角的大小為______.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在四面體ABCD中,E,F(xiàn)分別是AC、BD的中點,若AB=
2,CD=4,EF⊥AB,則EF與CD所成之角______.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在四面體
中,已知棱
的長為
,其余各棱長都為
,則二面角
的余弦值為( )
查看答案和解析>>