已知橢圓
x2
a2
+
y2
b2
=1 (a>b>0)
的面積為abπ,若全集U={(x,y)|x∈R,y∈R},
集合A={(x,y)|
x2
16
+
y2
9
≤1},B={(x,y)|3x+4y+12>0}
,則A∩(?uB)所表示的圖形的面積為( 。
A、6(π-1)
B、9π+6
C、3π-3
D、3(π-2)
分析:根據(jù)二元一次不等式組表示平面區(qū)域,確定?uB對應的平面區(qū)域,然后確定集合A∩(?uB)對應的平面區(qū)域,然后求區(qū)域面積.
解答:解:根據(jù)集合補集的定義可知(?uB)={(x,y)|3x+4y+12≤0},精英家教網(wǎng)
∴A∩(?uB)所表示的圖形的為圖中陰影部分,
∵橢圓
x2
a2
+
y2
b2
=1 (a>b>0)
的面積為abπ,
∴對應陰影部分橢圓部分的面積為
1
4
•π×3×4=3π
,
三角形的面積為
1
2
×3×4=6

∴A∩(?uB)所表示的圖形的面積為3π-6=3(π-2),
故選:D.
點評:本題主要考查區(qū)域面積的求法,利用二元一次不等式表示平面區(qū)域是解決本題的關(guān)鍵,考查學生的計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點分別為F1,F(xiàn)2,左頂點為A,若|F1F2|=2,橢圓的離心率為e=
1
2

(Ⅰ)求橢圓的標準方程,
(Ⅱ)若P是橢圓上的任意一點,求
PF1
PA
的取值范圍
(III)直線l:y=kx+m與橢圓相交于不同的兩點M,N(均不是長軸的頂點),AH⊥MN垂足為H且
AH
2
=
MH
HN
,求證:直線l恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦點F(-c,0)是長軸的一個四等分點,點A、B分別為橢圓的左、右頂點,過點F且不與y軸垂直的直線l交橢圓于C、D兩點,記直線AD、BC的斜率分別為k1,k2
(1)當點D到兩焦點的距離之和為4,直線l⊥x軸時,求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率是
3
2
,且經(jīng)過點M(2,1),直線y=
1
2
x+m(m<0)
與橢圓相交于A,B兩點.
(1)求橢圓的方程;
(2)當m=-1時,求△MAB的面積;
(3)求△MAB的內(nèi)心的橫坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•威海二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
6
3
,過右焦點做垂直于x軸的直線與橢圓相交于兩點,且兩交點與橢圓的左焦點及右頂點構(gòu)成的四邊形面積為
2
6
3
+2

(Ⅰ)求橢圓的標準方程;
(Ⅱ)設點M(0,2),直線l:y=1,過M任作一條不與y軸重合的直線與橢圓相交于A、B兩點,若N為AB的中點,D為N在直線l上的射影,AB的中垂線與y軸交于點P.求證:
ND
MP
AB
2
為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為F,過F作y軸的平行線交橢圓于M、N兩點,若|MN|=3,且橢圓離心率是方程2x2-5x+2=0的根,求橢圓方程.

查看答案和解析>>

同步練習冊答案