設函數(shù)
(1)對于任意實數(shù)恒成立,求的最大值;
(2)若方程有且僅有一個實根,求的取值范圍.

(1)(2)

解析試題分析:(1)先求導,因為為二次函數(shù),所以對于任意實數(shù),恒成立,即恒成立。所以此二次函數(shù)的圖像應開口向上,判別式小于等于0。(2)分別解得函數(shù)的單調(diào)性和極值。畫圖分析可知要使只有一個根則應極大值小于0或極小值大于0.
試題解析:解:(1) ,      2分
因為,,  即 恒成立,           4分
所以 , 得,
的最大值為          6分
(2) 因為 當時, ;當時, ;
時, ;      8分
所以 當時,取極大值 ;
時,取極小值 ;       10分
故當 或時, 方程僅有一個實根.
解得 .     14分
考點:用導數(shù)研究函數(shù)的性質(zhì)。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)(其中為常數(shù)且)在處取得極值.
(I) 當時,求的單調(diào)區(qū)間;
(II) 若上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙二人平時跑步路程與時間的關系以及百米賽跑路程和時間的關
系分別如圖①、②所示.問:
 
(1)甲、乙二人平時跑步哪一個跑得快?
(2)甲、乙二人百米賽跑,快到終點時,誰跑得快(設Δss的增量)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=在點(-1,f(-1))處的切線方程為x+y+3=0.
(1)求函數(shù)f(x)的解析式.
(2)設g(x)=lnx.求證:g(x)≥f(x)在[1,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)f(x)=x3ax2ax,g(x)=2x2+4xc.
(1)試問函數(shù)f(x)能否在x=-1時取得極值?說明理由;
(2)若a=-1,當x∈[-3,4]時,函數(shù)f(x)與g(x)的圖象有兩個公共點,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x3+x-16.
(1)求曲線y=f(x)在點(2,-6)處的切線方程.
(2)如果曲線y=f(x)的某一切線與直線y=-x+3垂直,求切點坐標與切線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求下列各函數(shù)的導數(shù):
(1)y=(x+1)(x+2)(x+3).
(2)y=+.
(3)y=e-xsin2x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=ax+ln x,其中a為常數(shù),e為自然對數(shù)的底數(shù).
(1)當a=-1時,求f(x)的最大值;
(2)當a=-1時,試推斷方程|f(x)|=是否有實數(shù)解,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求曲線yx3在點(3,27)處的切線與兩坐標軸所圍成的三角形的面積.

查看答案和解析>>

同步練習冊答案