已知橢圓的對(duì)稱軸為坐標(biāo)軸,離心率e=
2
3
,短軸長(zhǎng)為8
5
,求橢圓的方程.
分析:先根據(jù)題意求得b,進(jìn)而根據(jù)離心率求得c,a關(guān)系,根據(jù)a,b和c的關(guān)系求得a,即可求出橢圓的方程.
解答:解:依題意可知2b=8
5
,b=4
5
.b2=80
c
a
=
2
3

∴c=
2a
3
,a2=b2+c2,所以:a2=144
∴橢圓方程為
x2
144
+
y2
80
=1
y2
144
+
x2
80
=1

故答案為:
x2
144
+
y2
80
=1
y2
144
+
x2
80
=1
點(diǎn)評(píng):本題主要考查了橢圓的簡(jiǎn)單性質(zhì).在沒有注明焦點(diǎn)的位置時(shí),一定要分長(zhǎng)軸在x軸和y軸兩種情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)求與橢圓4x 2+9y 2=36 有相同的焦點(diǎn),且過點(diǎn)(0,3)的橢圓方程.
(2)已知橢圓的對(duì)稱軸為坐標(biāo)軸,離心率e=
23
,長(zhǎng)軸長(zhǎng)為12,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的對(duì)稱軸為坐標(biāo)軸,短軸的一個(gè)端點(diǎn)和兩個(gè)焦點(diǎn)的連線構(gòu)成一個(gè)正三角形,且焦點(diǎn)到橢圓上的點(diǎn)的最短距離為
3
,則橢圓的方程為( 。
A、
x2
12
+
y2
9
=1
B、
x2
9
+
y2
12
=1
x2
12
+
y2
3
=1
C、
x2
12
+
y2
3
=1
D、
x2
12
+
y2
9
=1
x2
9
+
y2
12
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年東城區(qū)期末理)(13分)

 已知橢圓的對(duì)稱軸為坐標(biāo)軸,且拋物線的焦點(diǎn)是橢圓的一個(gè)焦點(diǎn),又點(diǎn)在橢圓上.

(Ⅰ)求橢圓的方程;

(Ⅱ)已知直線的方向向量為,若直線與橢圓交于、兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年福建省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本小題滿分13分)已知橢圓的對(duì)稱軸為坐標(biāo)軸且焦點(diǎn)在x軸,離心率,短軸長(zhǎng)為4,(1)求橢圓的方程;

(2)過橢圓的右焦點(diǎn)作一條斜率為2的直線與橢圓交于兩點(diǎn),求AB的中點(diǎn)坐標(biāo)及其弦長(zhǎng)|AB|。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案