【題目】在正方體ABCD﹣A1B1C1D1中: (Ⅰ)求證:AC∥平面A1BC1;
(Ⅱ)求證:平面A1BC1⊥平面BB1D1D.
【答案】證明:(Ⅰ)因?yàn)锳A1∥CC1 , 所以四邊形ACC1A1為平行四邊形, 所以AC∥A1C1 , 又A1C1平面A1BC1 , AC平面A1BC1 , AC∥平面A1BC1;
(Ⅱ)易知A1C1⊥B1D1 , 因?yàn)锽B1⊥平面A1B1C1D1 , 所以BB1⊥A1C1
因?yàn)锽B1∩B1D1=B1 , 所以A1C1⊥平面BB1D1D,
因?yàn)锳1C1平面A1BC1 , 所以平面A1BC1⊥平面BB1D1D
【解析】(Ⅰ)證明四邊形ACC1A1為平行四邊形,可得AC∥A1C1 , 即可證明AC∥平面A1BC1;(Ⅱ)證明A1C1⊥平面BB1D1D,即可證明平面A1BC1⊥平面BB1D1D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中, 平面, , 是上的動(dòng)點(diǎn), .
(Ⅰ)若點(diǎn)是中點(diǎn),證明:平面平面;
(Ⅱ)判斷點(diǎn)到平面的距離是否為定值?若是,求出定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)團(tuán)委組織了“弘揚(yáng)奧運(yùn)精神,愛(ài)我中華”的知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后畫(huà)出如下部分頻率分布直方圖.觀察圖形給出的信息,回答下列問(wèn)題:
(1)求第四小組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)估計(jì)這次考試的及格率(60分及以上為及格)和平均分;
(3)從成績(jī)是[40,50)和[90,100]的學(xué)生中選兩人,求他們?cè)谕环謹(jǐn)?shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一直線l過(guò)直線l1:3x﹣y=3和直線l2:x﹣2y=2的交點(diǎn)P,且與直線l3:x﹣y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓心在x正半軸上的半徑為 的圓C相切,求圓C的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,DE∥BC,BC=2DE,CA⊥CB,CA⊥CD,CB⊥CD,F(xiàn)、G分別是AC、BC中點(diǎn).
(1)求證:平面DFG∥平面ABE;
(2)若AC=2BC=2CD=4,求二面角E﹣AB﹣C的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形ABCD中,AB=2,AD=1,M為CD的中點(diǎn).如圖將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求證:BM⊥平面ADM;
(2)若點(diǎn)E是線段DB上的中點(diǎn),求三棱錐E﹣ABM的體積V1與四棱錐D﹣ABCM的體積V2之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面四邊形ABCD中,AD=1,CD=2,AC= .
(Ⅰ)求cos∠CAD的值;
(Ⅱ)若cos∠BAD=﹣ ,sin∠CBA= ,求BC的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ax﹣(k﹣1)a﹣x(a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求k值;
(2)若f(1)= ,且g(x)=a2x+a﹣2x﹣2mf(x)在[1,+∞)上的最小值為﹣2,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若把函數(shù)y=sin(ωx﹣ )的圖象向左平移 個(gè)單位,所得到的圖象與函數(shù)y=cosωx的圖象重合,則ω的一個(gè)可能取值是( )
A.2
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com