如圖所示,PD⊥底面ABCD,四邊形ABCD是正方形,PD=DC,E是PC的中點.
(1)證明:PA平面BDE;
(2)證明:平面ADE⊥平面PBC;
(3)求直線AE與平面ABCD所成角的余弦值.
(1)連接AC,交BD于O,連接EO.
∵四邊形ABCD是正方形,∴O為AC中點,
∵△PAC中,E為PA的中點,
∴OE是△PAC的中位線,可得OEPA.
又∵OE?平面BDE,PA?平面BDE,
∴PA平面BDE;
(2)∵PD⊥平面ABCD,BC?平面ABCD,
∴PD⊥BC
又∵CD⊥BC,PD、CD是平面PCD內(nèi)的相交直線
∴BC⊥平面PCD,結合DE?平面PCD,得DE⊥BC,
∵△PCD中,PD=DC,E為P中點,∴DE⊥PC,
∵PC、BC是平面PBC內(nèi)的相交直線
∴DE⊥平面PBC
∵DE?平面ADE,∴平面ADE⊥平面PBC;
(3)取CD中點,連接AH、EH
∵△PCD中,E、H分別為PC、CD的中點
∴EHPD,結合PD⊥平面ABCD,可得EH⊥平面ABCD
因此,AH就是AE在平面BACD內(nèi)的射影
∴∠EAH就是直線AE與平面ABCD所成角
∵Rt△AEH中,AH=
AD2+DH2
=
5
,EH=
1
2
PD=1
∴AE=
AH2+EH2
=
6
,可得cos∠EAH=
AH
AE
=
30
6

即直線AE與平面ABCD所成角的余弦值為
30
6
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

平行六面體ABCD=A1B1C1D1中,AB=1,AD=2,AA1=3.∠BAD=90°,∠BAA1=∠DAA1=60°
求AC1的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

直三棱柱ABC-A1B1C1中,∠ACB=120°,AC=CB=A1A=1,D1是A1B1上一動點(可以與A1或B1重合),過D1和C1C的平面與AB交于D.
(Ⅰ)證明BC平面AB1C1;
(Ⅱ)若D1為A1B1的中點,求三棱錐B1-C1AD1的體積VB1-C1AD1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

正方體ABCD-A1B1C1D1的棱長為1,P、Q分別是正方形AA1D1D和A1B1C1D1的中心.
(1)證明:PQ平面DD1C1C;
(2)求線段PQ的長;
(3)求PQ與平面AA1D1D所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=
1
2
PA,點O、D分別是AC、PC的中點,OP⊥底面ABC.
(Ⅰ)求證OD平面PAB;
(Ⅱ)求直線OD與平面PBC所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在長方體ABCD-A1B1C1D1中,AD=
2
,AA1=2,如圖,
(1)當點P在BB1上運動時(點P∈BB1,且異于B,B1)設PA∩BA1=M,PC∩BC1=N,求證:MN平面ABCD
(2)當點P是BB1的中點時,求異面直線PC與AD1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在正方體ABCD-A1B1C1D1中,E是AA1的中點.
(1)求CAl與底面ABCD所成角的正切值;
(2)證明A1C平面BDE.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖是一個長方體截去一個角所得的多面體的直觀圖及它的正(主)視圖和側(cè)(左)視圖(單位:cm).
(1)畫出該多面體的俯視圖;
(2)按照給出的尺寸,求該多面體的體積;
(3)在所給直觀圖中連接BC',證明:BC'平面EFG.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DCAB,∠BAD=90°,且AB=2AD=2DC=2PD=4(單位:cm),E為PA的中點.
(1)證明:DE平面PBC;
(2)證明:DE⊥平面PAB.

查看答案和解析>>

同步練習冊答案