已知
a
b
,
c
是非零平面向量,且
a
b
不共線,則方程
a
x2+
b
x+
c
=
0
的解的情況是( 。
分析:先將向量
c
移到另一側(cè)得到關(guān)于向量
c
=-
a
x2-
b
x,再由平面向量的基本定理判斷解的情況即可.
解答:解:∵
a
x2+
b
x+
c
=
0

c
=-
a
x2-
b
x,
因?yàn)?span id="7nroc87" class="MathJye">
c
可以由不共線的向量唯一表示,
所以可以由
a
b
唯一表示,
若恰好在基向量下的分解的系數(shù)是乘方的關(guān)系,則有一個(gè)解,否則無解,
所以至多一個(gè)解.
故選A.
點(diǎn)評(píng):本題主要考查平面向量的基本定理,即平面內(nèi)任意向量都可由兩不共線的非零向量唯一表示出來.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•鹽城二模)已知a,b,c是非零實(shí)數(shù),則“a,b,c成等比數(shù)列”是“b=
ac
”的
必要不充分
必要不充分
條件(從“充要”、“充分不必要”、“必要不充分”、“既不充分又不必要”中選擇一個(gè)填空).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•寶山區(qū)一模)下列命題正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:鹽城二模 題型:填空題

已知a,b,c是非零實(shí)數(shù),則“a,b,c成等比數(shù)列”是“b=
ac
”的______條件(從“充要”、“充分不必要”、“必要不充分”、“既不充分又不必要”中選擇一個(gè)填空).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省鹽城市高考數(shù)學(xué)二模試卷(解析版) 題型:填空題

已知a,b,c是非零實(shí)數(shù),則“a,b,c成等比數(shù)列”是“”的    條件(從“充要”、“充分不必要”、“必要不充分”、“既不充分又不必要”中選擇一個(gè)填空).

查看答案和解析>>

同步練習(xí)冊(cè)答案