已知F1、F2分別為橢圓
x2
25
+
y2
9
=1的左、右焦點(diǎn),P為橢圓上一點(diǎn),Q是y軸上的一個(gè)動(dòng)點(diǎn),若|
PF1
|-|
PF2
|=4,則
PQ
•(
PF1
-
PF2
)=
 
分析:先取Q的特殊位置假設(shè)Q在原點(diǎn)上,然后根據(jù)橢圓的性質(zhì)可得到|
PF1
|+|
PF2
|=10,再結(jié)合|
PF1
|+|
PF2
|=10可分別求出|
PF1
|、|
PF2
|的值,然后用
PF1
PF2
表示出
PQ
來,最后根據(jù)
PQ
PF1
-
PF2
)=
1
2
(|
PF1
|2-|
PF2
|2)將|
PF1
|、|
PF2
|的值代入可得答案.
解答:解:因?yàn)镼是y軸上的一個(gè)動(dòng)點(diǎn),所以可取原點(diǎn)這個(gè)特殊位置來解;
又P為橢圓上一點(diǎn),F(xiàn)1、F2為橢圓的左、右焦點(diǎn),|
PF1
|+|
PF2
|=10,且|
PF1
|-|
PF2
|=4
∴|
PF1
|=7,|
PF2
|=3,
PQ
PF1
-
PF2
)=
PO
• 
F2F1

=
1
2
PF1
+
PF2
)(
PF1
-
PF2

=
1
2
(|
PF1
|2-|
PF2
|2
=20
故答案為:20
點(diǎn)評(píng):本題主要考查橢圓的基本性質(zhì)的應(yīng)用.考查基礎(chǔ)知識(shí)的靈活應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別為橢圓
x2
3
+
y2
2
=1
的左、右焦點(diǎn),直線l1過點(diǎn)F1且垂直于橢圓的長(zhǎng)軸,動(dòng)直線l2垂直于直線l1,垂足為D,線段DF2的垂直平分線交l2于點(diǎn)M.
(Ⅰ)求動(dòng)點(diǎn)M的軌跡C的方程;
(Ⅱ)過點(diǎn)F1作直線交曲線C于兩個(gè)不同的點(diǎn)P和Q,設(shè)
F1P
F1Q
,若λ∈[2,3],求
F2P
F2Q
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2分別為橢圓
x2
16
+
y2
9
=1
的左、右焦點(diǎn),點(diǎn)P在橢圓上,若P、F1、F2是一個(gè)直角三角形的三個(gè)頂點(diǎn),則△PF1F2的面積為
9
7
4
9
7
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2分別為橢圓的左、右焦點(diǎn),橢圓上點(diǎn)M的橫坐標(biāo)等于右焦點(diǎn)的橫坐標(biāo),其縱坐標(biāo)等于短半軸長(zhǎng)的
2
3
,則橢圓的離心率為
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別為雙曲線x2-
y2
4
=1
的左、右焦點(diǎn),P是雙曲線上的動(dòng)點(diǎn),過F1作∠F1PF2的平分線的垂線,垂足為H,則點(diǎn)H的軌跡為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案