(本小題滿分13分)
在平面直角坐標(biāo)系中,已知點(diǎn),點(diǎn)在直線上運(yùn)動(dòng),過點(diǎn)垂直的直線和的中垂線相交于點(diǎn)
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)點(diǎn)是軌跡上的動(dòng)點(diǎn),點(diǎn),軸上,圓為參數(shù))內(nèi)切于,求的面積的最小值.
(1)(2)當(dāng)點(diǎn)的坐標(biāo)為時(shí),的面積取最小值
(Ⅰ)設(shè)點(diǎn)的坐標(biāo)為,由題設(shè)知,
所以動(dòng)點(diǎn)的軌跡是以為焦點(diǎn),為準(zhǔn)線的拋物線,其方程為.      ……
(Ⅱ)設(shè),,,且,
故直線的方程為
消去參數(shù),得.                           ……
由題設(shè)知,圓心到直線的距離為,即
注意到,化簡上式,得,同理可得

由上可知,,為方程的兩根,根據(jù)求根公式,可得
.                                                   ……
的面積為
,等號(hào)當(dāng)且僅當(dāng)時(shí)成立.此時(shí)點(diǎn)的坐標(biāo)為
綜上所述,當(dāng)點(diǎn)的坐標(biāo)為時(shí),的面積取最小值
……
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共14分)
已知,動(dòng)點(diǎn)到定點(diǎn)的距離比到定直線的距離小.
(I)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)是軌跡上異于原點(diǎn)的兩個(gè)不同點(diǎn),,求面積的最小值;
(Ⅲ)在軌跡上是否存在兩點(diǎn)關(guān)于直線對(duì)稱?若存在,求出直線 的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過橢圓的左焦點(diǎn)F的直線交橢圓于點(diǎn)A、B,交其左準(zhǔn)線于點(diǎn)C,
,則此直線的斜率為                     
A、   B、   C、     D、 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本大題滿分14分)如圖,F(xiàn)為雙曲線C:的右焦點(diǎn)。P為雙曲線C右支上一點(diǎn),且位于軸上方,M為左準(zhǔn)線上一點(diǎn),為坐標(biāo)原點(diǎn)。已知四邊形為平行四邊形,
(Ⅰ)寫出雙曲線C的離心率的關(guān)系式;
(Ⅱ)當(dāng)時(shí),經(jīng)過焦點(diǎn)F且品行于OP的直線交雙曲線于A、B點(diǎn),若,求此時(shí)的雙曲線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
現(xiàn)有變換公式可把平面直角坐標(biāo)系上的一點(diǎn)變換到這一平面上的一點(diǎn).
(1)若橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且焦距為,長軸頂點(diǎn)和短軸頂點(diǎn)間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程,并求出其兩個(gè)焦點(diǎn)、經(jīng)變換公式變換后得到的點(diǎn)的坐標(biāo);
(2) 若曲線上一點(diǎn)經(jīng)變換公式變換后得到的點(diǎn)與點(diǎn)重合,則稱點(diǎn)是曲線在變換下的不動(dòng)點(diǎn). 求(1)中的橢圓在變換下的所有不動(dòng)點(diǎn)的坐標(biāo);
(3) 在(2)的基礎(chǔ)上,試探究:中心為坐標(biāo)原點(diǎn)、對(duì)稱軸為坐標(biāo)軸的橢圓和雙曲線在變換下的不動(dòng)點(diǎn)的存在情況和個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,是否存在斜率為k(k≠0)的直線,使與橢圓交于不同的兩點(diǎn)A、B,且線段的垂直平分線經(jīng)過點(diǎn)M(0,-1),求斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓與雙曲線的焦點(diǎn)相同,則        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過原點(diǎn)的直線與橢圓交于A、B兩點(diǎn),為橢圓的焦點(diǎn),則四邊形AF1BF2面積的最大值是                 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線處的切線的斜率是(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案