已知函數(shù)f(x)=(x-a)2(x-b)(a,b∈R,a<b).
(1)當(dāng)a=1,b=2時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程.
(2)設(shè)x1,x2是f′(x)=0的兩個(gè)根,x3是f(x)的一個(gè)零點(diǎn),且x3≠x1,x3≠x2.
證明:存在實(shí)數(shù)x4,使得x1,x2,x3,x4按某種順序排列后成等差數(shù)列,并求x4.
(1)當(dāng)a=1,b=2時(shí),f(x)=(x-1)2(x-2),
因?yàn)閒′(x)=(x-1)(3x-5),故f′(2)=1,f(2)=0,
所以f(x)在點(diǎn)(2,0)處的切線方程為y=x-2.
(2)因?yàn)閒′(x)=3(x-a)(x-),
由于a<b,故a<.
所以f(x)的兩個(gè)極值點(diǎn)為x=a,x=.
不妨設(shè)x1=a,x2=,
因?yàn)閤3≠x1,x3≠x2,且x3是f(x)的零點(diǎn),
故x3=b.
又因?yàn)?sub>-a=2(b-),
所以x1,x4,x2,x3成等差數(shù)列.
所以x4=(a+)=,
所以存在實(shí)數(shù)x4滿足題意,且x4=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011屆南京市金陵中學(xué)高三第四次模擬考試數(shù)學(xué)試題 題型:解答題
(本小題滿分16分)已知函數(shù)f(x)=ax2-(2a+1)x+2lnx(a為正數(shù)).
(1) 若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2) 求f(x)的單調(diào)區(qū)間;
(3) 設(shè)g(x)=x2-2x,若對(duì)任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州市高三上學(xué)期開(kāi)學(xué)考試數(shù)學(xué)卷 題型:選擇題
已知函數(shù)f(x)=4x2-mx+5在區(qū)間[-2,+∞)上是增函數(shù),則f(1)的范圍是( )
A.f(1)≥25 B.f(1)=25 C.f(1)≤25 D.f(1)>25
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省高三第三次月考文科數(shù)學(xué)卷 題型:選擇題
已知函數(shù)f(x)=若f(a)=,則a= ( )
A.-1 B.
C.-1或 D.1或-
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省天門(mén)市高三天5月模擬文科數(shù)學(xué)試題 題型:填空題
已知函數(shù)f(x)=ax2+bx+c(a≠0),且f(x)=x無(wú)實(shí)根,下列命題中:
(1)方程f [f (x)]=x一定無(wú)實(shí)根;
(2)若a>0,則不等式f [f (x)]>x對(duì)一切實(shí)數(shù)x都成立;
(3)若a<0,則必存在實(shí)數(shù)x0,使f [f (x0)]>x0;
(4)若a+b+c=0,則不等式f [f (x)]<x對(duì)一切x都成立;
正確的序號(hào)有 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012屆江西省南昌市高三第一次模擬測(cè)試卷理科數(shù)學(xué)試卷 題型:選擇題
已知函數(shù)f(x)=|lg(x-1)|-()x有兩個(gè)零點(diǎn)x1,x2,則有
A.x1x2<1 B.x1x2<x1+x2
C.x1x2=x1+x2 D.x1x2>x1+x2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com