【題目】已知A,B,C為銳角△ABC的內(nèi)角, =(sinA,sinBsinC), =(1,﹣2),
(1)tanB,tanBtanC,tanC能否構(gòu)成等差數(shù)列?并證明你的結(jié)論;
(2)求tanAtanBtanC的最小值.

【答案】
(1)解:依題意有sinA=2sinBsinC.

在△ABC中,A=π﹣B﹣C,

所以sinA=sin(B+C)=sinBcosC+cosBsinC,

所以2sinBsinC=sinBcosC+cosBsinC.

因?yàn)椤鰽BC為銳角三角形,所以cosB>0,cosC>0,

所以tanB+tanC=2tanBtanC,

所以tanB,tanBtanC,tanC成等差數(shù)列.


(2)解:在銳角△ABC中,

tanA=tan(π﹣B﹣C)=﹣tan(B+C)=﹣ ,

即tanAtanBtanC=tanA+tanB+tanC,

由(1)知tanB+tanC=2tanBtanC,

于是tanAtanBtanC=tanA+2tanBtanC≥ ,

整理得tanAtanBtanC≥8,

當(dāng)且僅當(dāng)tanA=4時(shí)取等號,

故tanAtanBtanC的最小值為8.


【解析】(1)依題意有sinA=2sinBsinC,從而2sinBsinC=sinBcosC+cosBsinC,再由cosB>0,cosC>0,能推導(dǎo)出tanB,tanBtanC,tanC成等差數(shù)列.(2)推導(dǎo)出tanAtanBtanC=tanA+tanB+tanC,從而tanAtanBtanC≥8,由此能求出tanAtanBtanC的最小值為8.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系的相關(guān)知識,掌握若平面的法向量為,平面的法向量為,要證,只需證,即證;即:兩平面垂直兩平面的法向量垂直.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為四棱錐P﹣ABCD的表面展開圖,四邊形ABCD為矩形, ,AD=1.已知頂點(diǎn)P在底面ABCD上的射影為點(diǎn)A,四棱錐的高為 ,則在四棱錐P﹣ABCD中,PC與平面ABCD所成角的正切值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐A﹣BCDE中,底面BCDE為矩形,側(cè)面ABC⊥底面BCDE,BC=2,CD= ,AB=AC.

(1)證明:AD⊥CE;
(2)設(shè)CE與平面ABE所成的角為45°,求二面角C﹣AD﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓O:x2+y2=2,直線l:y=kx﹣2.
(1)若直線l與圓O交于不同的兩點(diǎn)A,B,當(dāng) 時(shí),求k的值;
(2)若 是直線l上的動點(diǎn),過P作圓O的兩條切線PC、PD,切點(diǎn)為C、D,探究:直線CD是否過定點(diǎn)?若過定點(diǎn)則求出該定點(diǎn),若不存在則說明理由;
(3)若EF、GH為圓O:x2+y2=2的兩條相互垂直的弦,垂足為 ,求四邊形EGFH的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科技研究所對一批新研發(fā)的產(chǎn)品長度進(jìn)行檢測(單位:mm),如圖是檢測結(jié)果的頻率分布直方圖,據(jù)此估計(jì)這批產(chǎn)品的中位數(shù)為(

A.20
B.22.5
C.22.75
D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的i值為(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2014年“五一節(jié)”期間,高速公路車輛較多,交警部門通過路面監(jiān)控裝置抽樣調(diào)查某一山區(qū)路段汽車行駛速度,采用的方法是:按到達(dá)監(jiān)控點(diǎn)先后順序,每隔50輛抽取一輛,總共抽取120輛,分別記下其行車速度,將行車速度(km/h)分成七段[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),[90,95)后得到如圖所示的頻率分布直方圖,據(jù)圖解答下列問題:

(1)求a的值,并說明交警部門采用的是什么抽樣方法?
(2)求這120輛車行駛速度的眾數(shù)和中位數(shù)的估計(jì)值(精確到0.1);
(3)若該路段的車速達(dá)到或超過90km/h即視為超速行駛,試根據(jù)樣本估計(jì)該路段車輛超速行駛的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位用2160萬元購得一塊空地,計(jì)劃在該地塊上建造一棟至少10層,每層2000平方米的樓房.經(jīng)測算,如果將樓房建為x(x≥10)層,則每平方米的平均建筑費(fèi)用為560+48x(單位:元).
(注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購地費(fèi)用,平均購地費(fèi)用=
(1)寫出樓房平均綜合費(fèi)用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式;
(2)該樓房應(yīng)建造多少層時(shí),可使樓房每平方米的平均綜合費(fèi)用最少?最少值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:函數(shù)f(x)=lg(ax2﹣x+ a)的定義域?yàn)镽;命題q:不等式 <1+ax對一切正實(shí)數(shù)均成立.如果命題p或q為真命題,命題p且q為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案