精英家教網 > 高中數學 > 題目詳情

已知,( a為常數,e為自然對數的底).
(1)
(2)時取得極小值,試確定a的取值范圍;
(3)在(2)的條件下,設的極大值構成的函數,將a換元為x,試判斷是否能與(m為確定的常數)相切,并說明理由.

(1);(2)使函數時取得極小值的的取值范圍是;(3)不能相切,過程見解析.

解析試題分析:(1)當時,,先求導函數,將代入可得;(2),令,得,對進行討論,當時,在區(qū)間上單調遞減,沒有極小值,當時,是函數的極小值點,當時,是函數的極大值點;(3)極大值為,則,可得,令恒成立,即在區(qū)間上是增函數.當時,,即恒有,直線斜率為,不可能相切.
解(1)當時,
所以
(2)
,得
,即時,
恒成立,
此時在區(qū)間上單調遞減,沒有極小值;
,即時,
,則.若,則
所以是函數的極小值點.
,即時,
,則.若,則
此時是函數的極大值點.
綜上所述,使函數

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖所示,拋物線軸所圍成的區(qū)域是一塊等待開墾的土地,現(xiàn)計劃在該區(qū)域內圍出一塊矩形地塊ABCD作為工業(yè)用地,其中A、B在拋物線上,C、D在軸上.已知工業(yè)用地每單位面積價值為,其它的三個邊角地塊每單位面積價值元.
(1)求等待開墾土地的面積;
(2)如何確定點C的位置,才能使得整塊土地總價值最大.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

求函數的極值

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(1)求f(x)的單調區(qū)間和極值;
(2)關于的方程f(x)=a在區(qū)間上有三個根,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,為自然對數的底數.
(I)求函數的極值;
(2)若方程有兩個不同的實數根,試求實數的取值范圍;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數.
(1)若時有極值,求實數的值和的極大值;
(2)若在定義域上是增函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(1)若時,函數有三個互不相同的零點,求的取值范圍;
(2)若函數內沒有極值點,求的取值范圍;
(3)若對任意的,不等式上恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求的單調區(qū)間和極值;
(2)若對于任意的,都存在,使得,求的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

記函數fn(x)=a·xn-1(a∈R,n∈N*)的導函數為f′n(x),已知f′3(2)=12.
(1)求a的值;
(2)設函數gn(x)=fn(x)-n2ln x,試問:是否存在正整數n使得函數gn(x)有且只有一個零點?若存在,請求出所有n的值;若不存在,請說明理由;
(3)若實數x0和m(m>0且m≠1)滿足,試比較x0與m的大小,并加以證明.

查看答案和解析>>

同步練習冊答案