【題目】已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,c= asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面積為 ,求b,c.

【答案】
(1)解:c= asinC﹣ccosA,由正弦定理有:

sinAsinC﹣sinCcosA﹣sinC=0,即sinC( sinA﹣cosA﹣1)=0,

又,sinC≠0,

所以 sinA﹣cosA﹣1=0,即2sin(A﹣ )=1,

所以A=


(2)解:SABC= bcsinA= ,所以bc=4,

a=2,由余弦定理得:a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,

即有 ,

解得b=c=2


【解析】(1)由正弦定理有: sinAsinC﹣sinCcosA﹣sinC=0,可以求出A;(2)有三角形面積以及余弦定理,可以求出b、c.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】樣本中共有五個個體,其值分別為a,0,1,2,3.若該樣本的平均值為1,則樣本方差為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,則異面直線A1B與AC所成角的余弦值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)滿足對于任意實數(shù)a,b,c,都有f(a),f(b),f(c)為某三角形的三邊長,則成f(x)為“可構(gòu)造三角形函數(shù)”,已知f(x)= 是“可構(gòu)造三角形函數(shù)”,則實數(shù)t的取值范圍是(
A.[﹣1,0]
B.(﹣∞,0]
C.[﹣2,﹣1]
D.[﹣2,﹣ ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)對任意實數(shù)x,y均有f(x)=f( )+f( ).當(dāng)x>0時,f(x)>0
(1)判斷函數(shù)f(x)在R上的單調(diào)性并證明;
(2)設(shè)函數(shù)g(x)與函數(shù)f(x)的奇偶性相同,當(dāng)x≥0時,g(x)=|x﹣m|﹣m(m>0),若對任意x∈R,不等式g(x﹣1)≤g(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A為橢圓 =1(a>b>0)上的一個動點,弦AB,AC分別過左右焦點F1 , F2 , 且當(dāng)線段AF1的中點在y軸上時,cos∠F1AF2= . (Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè) ,試判斷λ12是否為定值?若是定值,求出該定值,并給出證明;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B是單位圓O上的兩點,A,B點分別在第一,而象限,點C是圓O與x軸正半軸的交點,若∠COA=60°,∠AOB=α,點B的坐標為(﹣ , ).
(1)求sinα的值;
(2)已知動點P沿圓弧從C點到A點勻速運動需要2秒鐘,求動點P從A點開始逆時針方向作圓周運動時,點P的縱坐標y關(guān)于時間t(秒)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=2px(p>0),F(xiàn)為其焦點,l為其準線,過F作一條直線交拋物線于A,B兩點,A′,B′分別為A,B在l上的射線,M為A′B′的中點,給出下列命題: ①A′F⊥B′F;
②AM⊥BM;
③A′F∥BM;
④A′F與AM的交點在y軸上;
⑤AB′與A′B交于原點.
其中真命題的是 . (寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體ABCD﹣A1B1C1D1 , O是底ABCD對角線的交點.求證:

(1)C1O∥面AB1D1;
(2)面OC1D∥面AB1D1

查看答案和解析>>

同步練習(xí)冊答案