【題目】在等差數(shù)列{an}中,a1=2,a3+a5=16. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)如果a2 , am , a2m成等比數(shù)列,求正整數(shù)m的值.
【答案】解:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,
則a3+a5=2a1+6d=16,
又因?yàn)閍1=2,
解得d=2.
所以an=a1+(n﹣1)d=2n;
(Ⅱ)因?yàn)閍2,am,a2m成等比數(shù)列,
所以 ,
即(2m)2=4×4m,m∈N*,
解得m=4.
【解析】(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,結(jié)合題意可得a3+a5=2a1+6d=16,解可得d的值,代入等差數(shù)列的通項(xiàng)公式即可得答案;(Ⅱ)根據(jù)題意,由等比數(shù)列的性質(zhì)可得 ,結(jié)合等差數(shù)列的通項(xiàng)公式可得(2m)2=4×4m,解可得m的值,即可得答案.
【考點(diǎn)精析】本題主要考查了等差數(shù)列的通項(xiàng)公式(及其變式)和等比數(shù)列的通項(xiàng)公式(及其變式)的相關(guān)知識(shí)點(diǎn),需要掌握通項(xiàng)公式:或;通項(xiàng)公式:才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|2x≥16},B={x|log2x≥a}.
(1)當(dāng)a=1時(shí),求A∩B;
(2)若A是B的子集,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科技研究所對(duì)一批新研發(fā)的產(chǎn)品長度進(jìn)行檢測(cè)(單位:mm),如圖是檢測(cè)結(jié)果的頻率分布直方圖,據(jù)此估計(jì)這批產(chǎn)品的中位數(shù)為( )
A.20
B.22.5
C.22.75
D.25
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2014年“五一節(jié)”期間,高速公路車輛較多,交警部門通過路面監(jiān)控裝置抽樣調(diào)查某一山區(qū)路段汽車行駛速度,采用的方法是:按到達(dá)監(jiān)控點(diǎn)先后順序,每隔50輛抽取一輛,總共抽取120輛,分別記下其行車速度,將行車速度(km/h)分成七段[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),[90,95)后得到如圖所示的頻率分布直方圖,據(jù)圖解答下列問題:
(1)求a的值,并說明交警部門采用的是什么抽樣方法?
(2)求這120輛車行駛速度的眾數(shù)和中位數(shù)的估計(jì)值(精確到0.1);
(3)若該路段的車速達(dá)到或超過90km/h即視為超速行駛,試根據(jù)樣本估計(jì)該路段車輛超速行駛的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)OABC是四面體,G1是△ABC的重心,G是OG1上一點(diǎn),且OG=3GG1 , 若 =x +y +z ,則(x,y,z)為( )
A.( , , )
B.( , , )
C.( , , )
D.( , , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位用2160萬元購得一塊空地,計(jì)劃在該地塊上建造一棟至少10層,每層2000平方米的樓房.經(jīng)測(cè)算,如果將樓房建為x(x≥10)層,則每平方米的平均建筑費(fèi)用為560+48x(單位:元).
(注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購地費(fèi)用,平均購地費(fèi)用= )
(1)寫出樓房平均綜合費(fèi)用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式;
(2)該樓房應(yīng)建造多少層時(shí),可使樓房每平方米的平均綜合費(fèi)用最少?最少值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 在區(qū)間 上有最大值 和最小值 .
(1)求 的值;
(2)若不等式 在 上有解,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=1,當(dāng)n≥2時(shí),Sn=2an .
(1)求證數(shù)列{an}為等比數(shù)列,并求出an的通項(xiàng)公式;
(2)設(shè)若bn=an+1﹣1,設(shè)數(shù)列{anbn}的前n項(xiàng)和為Tn , 求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1 , F2是橢圓 (a>b>0)的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P(﹣1, )在橢圓上,且 =0,⊙O是以F1F2為直徑的圓,直線l:y=kx+m與⊙O相切,并且與橢圓交于不同的兩點(diǎn)A,B
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng) =λ,且滿足 ≤λ≤ 時(shí),求弦長|AB|的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com