【題目】如圖,甲、乙兩個企業(yè)的用電負荷量關(guān)于投產(chǎn)持續(xù)時間(單位:小時)的關(guān)系均近似地滿足函數(shù).

1)根據(jù)圖象,求函數(shù)的解析式;

2)為使任意時刻兩企業(yè)用電負荷量之和不超過9,現(xiàn)采用錯峰用電的方式,讓企業(yè)乙比企業(yè)甲推遲小時投產(chǎn),求的最小值.

【答案】1;(24

【解析】

1)由,得,由,得A,b,代入,求得,從而即可得到本題答案;

2)由題,得恒成立,等價于恒成立,然后利用和差公式展開,結(jié)合輔助角公式,逐步轉(zhuǎn)化,即可得到本題答案.

1)解:由圖知,

,可得

,代入,得

,

所求為

2)設(shè)乙投產(chǎn)持續(xù)時間為小時,則甲的投產(chǎn)持續(xù)時間為小時,由誘導(dǎo)公式,企業(yè)乙用電負荷量隨持續(xù)時間變化的關(guān)系式為:

同理,企業(yè)甲用電負荷量變化關(guān)系式為:

兩企業(yè)用電負荷量之和

,

依題意,有恒成立

恒成立

展開有恒成立

其中,,,

整理得:

解得

得:

的最小值為4.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】 如圖是正方體的平面展開圖在這個正方體中,

①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.

以上四個命題中正確命題的序號是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知四棱錐P-ABCD的底面為直角梯形,AB//DC,PA底面ABCD,且PA=AD=DC=AB=1,MPB的中點.

1)證明:面PADPCD;

2)求ACPB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)奇函數(shù)在(0,+∞)上為單調(diào)遞增函數(shù),且,則不等式的解集為 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,則當時,討論單調(diào)性;

(2)若,且當時,不等式在區(qū)間上有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是一個由數(shù)字1,2,3,4,5,6,7,8,9組成的位正整數(shù),并同時滿足如下兩個條件

(1)數(shù)字1,2,…,中各出現(xiàn)兩次;

(2)每兩個相同的數(shù)字之間恰有個數(shù)字

此時,我們稱這樣的正整數(shù)好數(shù)”.例如,當時,可以是312 132.試確定滿足條件的正整數(shù)的值,并各寫出一個相應(yīng)的好數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調(diào)研可知:甲城市收益P與投入(單位:萬元)滿足,乙城市收益Q與投入(單位:萬元)滿足,設(shè)甲城市的投入為(單位:萬元),兩個城市的總收益為(單位:萬元).

(1)當甲城市投資50萬元時,求此時公司總收益;

(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知.

(1)求角C的值;

(2)若c=2,且△ABC的面積為,求a,b.

查看答案和解析>>

同步練習冊答案