(本小題滿分20分)在金融危機中,某鋼材公司積壓了部分圓鋼,經(jīng)清理知共有2009根.現(xiàn)將它們堆放在一起.

(1)若堆放成縱斷面為正三角形(每一層的根數(shù)比上一層根數(shù)多1根),并使剩余的圓鋼盡可能地少,則剩余了多少根圓鋼?

(2)若堆成縱斷面為等腰梯形(每一層的根數(shù)比上一層根數(shù)多1根),且不少于七層,

(Ⅰ)共有幾種不同的方案?

(Ⅱ)已知每根圓鋼的直徑為10cm,為考慮安全隱患,堆放高度不得高于4m,則選擇哪個方案,最能節(jié)省堆放場地?

解:(1)當(dāng)縱斷面為正三角形時,設(shè)共堆放層,則從上到下每層圓鋼根數(shù)是以1為首項、1為公差的等差數(shù)列,且剩余的圓鋼一定小于根,從而由得,當(dāng)時,使剩余的圓鋼盡可能地少,此時剩余了56根圓鋼;

(2)(Ⅰ)當(dāng)縱斷面為等腰梯形時,設(shè)共堆放層,則從上到下每層圓鋼根數(shù)是以為首項、1為公差的等差數(shù)列,從而,即

,因的奇偶性不同,所以的奇偶性也不同,且,從而由上述等式得:

,所以共有4種方案可供選擇。

(Ⅱ)因?qū)訑?shù)越多,最下層堆放得越少,占用面積也越少,所以由(2)可知:

,則,說明最上層有29根圓鋼,最下層有69根圓鋼,此時如圖所示,兩腰之長為400 cm,上下底之長為280 cm和680cm,從而梯形之高為 cm,

,所以符合條件;

,則,說明最上層有17根圓鋼,最下層有65根圓鋼,此時如圖所示,兩腰之長為480 cm,上下底之長為160 cm和640cm,從而梯形之高為 cm,顯然大于4m,不合條件,舍去;

綜上所述,選擇堆放41層這個方案,最能節(jié)省堆放場地。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分20分)已知函數(shù)f(x)=2x+alnx

(1)若a<0,證明:對于任意兩個正數(shù)x1,x2,總有≥f()成立;

(2)若對任意x∈[1,e],不等式f(x)≤(a+3)x-x2恒成立,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分20分)已知橢圓+=1(a>b>0)的離心率e=,過點A(0,-b)和B(a,0)的直線與原點的距離為.

(1)求橢圓的方程;

(2)已知定點E(-2,0),直線y=kx+t與橢圓交于C、D兩點,證明:對任意的t>0,都存在k ,使得以線段CD為直徑的圓過E點. w.w.w.k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分20分)已知函數(shù)f(x)=2x+alnx

(1)若a<0,證明:對于任意兩個正數(shù)x1,x2,總有≥f()成立;

(2)若對任意x∈[1,e],不等式f(x)≤(a+3)x-x2恒成立,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分20分)已知橢圓+=1(a>b>0)的離心率e=,過點A(0,-b)和B(a,0)的直線與原點的距離為.

(1)求橢圓的方程;

(2)已知定點E(-2,0),直線y=kx+t與橢圓交于C、D兩點,證明:對任意的t>0,都存在k ,使得以線段CD為直徑的圓過E點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分20分)

已知函數(shù)是區(qū)間上的減函數(shù).

(Ⅰ)若 上恒成立,求t的取值范圍;

(Ⅱ)討論關(guān)于x的方程  的根的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案