已知數(shù)列{an}的前n項(xiàng)和Sn是二項(xiàng)式(1+2x)2n(n∈N* )展開式中含x奇次冪的系數(shù)和.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)f(n)=,求f(0)+f()+f()+…+f();
(3)證明:++…+(1-).
【答案】分析:(1)記(1+2x)2n=a+a1x+…+a2nx2n,利用賦值可分別令x=1得:32n=a+a1+…+a2n,令x=-1得:1=a-a1+a2-a3+…-a2n-1+a2n兩式相減得:32n-1=2(a1+a3+…+a2n-1),從而可求
(2)由(1)可得,注意到f(n)+f(1-n)=,從而可考慮利用倒序相加求和即可
(3)由=
=,故可以利用裂項(xiàng)求和先求和,然后利用二展開式進(jìn)行放縮可證
解答:解:(1)記(1+2x)2n=a+a1x+…+a2nx2n
令x=1得:32n=a+a1+…+a2n
令x=-1得:1=a-a1+a2-a3+…-a2n-1+a2n
兩式相減得:32n-1=2(a1+a3+…+a2n-1
(2分)
當(dāng)n≥2時,an=Sn-Sn-1=4×9n-1
當(dāng)n=1時,a1=S1=4,適合上式
∴an=4×9n-1(4分)
(2)
注意到=(6分)

則T=

,即f(0)+f()+f()+…+f()=(8分)
(3)=
= (n≥2)(10分)

=(12分)
∵9n-1=(8+1)n-1=Cn1×8+Cn2×82+…+Cnn8n=8(4n2-3n)
從而可得,++…+(1-).(14分)
點(diǎn)評:本題主要考查了利用賦值法求二項(xiàng)展開式的系數(shù),及數(shù)列求和中的倒序相加、裂項(xiàng)求和等方法的應(yīng)用,還要注意放縮法在證明不等式中的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,那么它的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,若{an}為等比數(shù)列,則實(shí)數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項(xiàng)公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊答案