【題目】某果園基地培育出一種特色水果,要在某一季節(jié)內(nèi)采摘一批這種水果銷往A市,每售出1噸這種水果獲利800元,未售出的水果每噸虧損400元,根據(jù)去年市場(chǎng)調(diào)研數(shù)據(jù)統(tǒng)計(jì),該季節(jié)A市對(duì)這種水果的市場(chǎng)需求量t(單位:噸,100≤t≤150)的頻率分布直方圖如圖所示.現(xiàn)該果園計(jì)劃采摘140噸這種水果運(yùn)往A市,經(jīng)銷這種水果的利潤(rùn)Q(單位:元)

(1)求Q關(guān)t的函數(shù)表達(dá)式;

(2)視頻率為概率,求利潤(rùn)Q的分布列及數(shù)學(xué)期望.(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表).

【答案】(1)(2)見解析

【解析】

(1)分成兩段計(jì)算:當(dāng)需求量不小于噸時(shí),全部賣出.當(dāng)需求量小于噸時(shí),用獲利的減去虧損的計(jì)算出利潤(rùn)的表達(dá)式.(2)取每個(gè)小長(zhǎng)方形的中點(diǎn)作為代表,利用(1)的表達(dá)式求得相應(yīng)的利潤(rùn),同時(shí)計(jì)算出每個(gè)小長(zhǎng)方形的面積得到頻率,也即概率,由此得到分布列,并計(jì)算出數(shù)學(xué)期望.

解:(1)當(dāng)時(shí),

當(dāng)時(shí),

(2)由題意得的取值可以有105、115、125、135及145.

利潤(rùn)為:,概率為0.1;

,概率為0.2;,概率為0.3;

,概率為0.25; ,概率為0.15.

∴利潤(rùn)分布列為

Q

70000

82000

94000

106000

112000

P

0.1

0.2

0.3

0.25

0.15

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為邊長(zhǎng)為2的菱形,,,面,點(diǎn)為棱的中點(diǎn).

(1)在棱上是否存在一點(diǎn),使得,并說(shuō)明理由;

(2)當(dāng)二面角的余弦值為時(shí),求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】7本不同的書:

1)全部分給6個(gè)人,每人至少一本,有多少種不同的分法?

2)全部分給5個(gè)人,每人至少一本,有多少種不同的分法?.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐OABCD中,OA⊥底面ABCD,且底面ABCD是邊長(zhǎng)為2的正方形,且OA2M,N分別為OABC的中點(diǎn).

1)求證:直線MN平面OCD;

2)求點(diǎn)B到平面DMN的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)采用隨機(jī)模擬的方法估計(jì)某運(yùn)動(dòng)員射擊4次,至少擊中3次的概率:先由計(jì)算器給出09之間取整數(shù)值的隨機(jī)數(shù),指定0,1表示沒有擊中目標(biāo),2,3,4,5,67, 89表示擊中目標(biāo),以4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了 20組隨機(jī)數(shù):

7527 0293 7140 9857 0347 4373 8636 6947 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 7610 4281

根據(jù)以上數(shù)據(jù)估計(jì)該射擊運(yùn)動(dòng)員射擊4次至少擊中3次的概率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線為其焦點(diǎn),拋物線的準(zhǔn)線交軸于點(diǎn)T,直線l交拋物線于A,B兩點(diǎn)。

(1)O為坐標(biāo)原點(diǎn),直線l過(guò)拋物線焦點(diǎn),且,求△AOB的面積;

(2)當(dāng)直線l與坐標(biāo)軸不垂直時(shí),若點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)在直線AT上,證明直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰梯形ABCD中,,E,F分別為ABCD的中點(diǎn),,MDF中點(diǎn).現(xiàn)將四邊形BEFC沿EF折起,使平面平面AEFD,得到如圖所示的多面體.在圖中,

1)證明:;

2)求二面角E-BC-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列中,,公差,若 ,,則數(shù)列的前項(xiàng)和的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,都是各項(xiàng)為正數(shù)的數(shù)列,且,.對(duì)任意的正整數(shù)n,都有,成等差數(shù)列,,,成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)若存在p>0,使得集合M=恰有一個(gè)元素,求實(shí)數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案