已知橢圓的右焦點(diǎn)為,設(shè)左頂點(diǎn)為A,上頂點(diǎn)為B且,如圖.
(1)求橢圓的方程;
(2)若,過(guò)的直線交橢圓于兩點(diǎn),試確定的取值范圍.
(1)橢圓的方程為;(2)的取值范圍為.
解析試題分析:(1)首先寫出,,,由及向量數(shù)量積的坐標(biāo)運(yùn)算,可得方程,又由橢圓中關(guān)系得,解這個(gè)方程組得的值,從而得橢圓的標(biāo)準(zhǔn)方程;(2)先考慮直線斜率不存在的情況,,此時(shí),,=;若直線斜率存在,設(shè),代入橢圓方程消去得關(guān)于的一元二次方程,利用韋達(dá)定理,把表示成斜率的函數(shù),求此函數(shù)的值域,即得的取值范圍.
試題解析:(1)由已知,,,,則由得:.
∵,∴,解得,∴,∴橢圓. 4分
(2)①若直線斜率不存在,則,此時(shí),,=;
②若直線斜率存在,設(shè),,則由消去得:,∴,,∴
=.∵,∴,∴,∴.
綜上,的取值范圍為. 13分
考點(diǎn):1.橢圓的標(biāo)準(zhǔn)非常及其幾何性質(zhì);2.直線和橢圓的位置關(guān)系;3.利用向量的數(shù)量積運(yùn)算解決橢圓中的取值范圍問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線C的方程為-=1(a>0,b>0),離心率e=,頂點(diǎn)到漸近線的距離為.
(1)求雙曲線C的方程;
(2)如圖,P是雙曲線C上一點(diǎn),A、B兩點(diǎn)在雙曲線C的兩條漸近線上,且分別位于第一、二象限.若=λ,λ∈.求△AOB的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
直線l與橢圓+=1(a>b>0)交于A(x1,y1),B(x2,y2)兩點(diǎn),已知m=(ax1,by1),n=(ax2,by2),若m⊥n且橢圓的離心離e=,又橢圓經(jīng)過(guò)點(diǎn)(,1),O為坐標(biāo)原點(diǎn).
(1)求橢圓的方程.
(2)試問(wèn):△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓E:+=1(a>b>0)的離心率e=,a2與b2的等差中項(xiàng)為.
(1)求橢圓E的方程.
(2)A,B是橢圓E上的兩點(diǎn),線段AB的垂直平分線與x軸相交于點(diǎn)P(t,0),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:+=1(a>b>0)的右焦點(diǎn)為F(1,0),且點(diǎn)(-1,)在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程.
(2)已知點(diǎn)Q(,0),動(dòng)直線l過(guò)點(diǎn)F,且直線l與橢圓C交于A,B兩點(diǎn),證明:·為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),A(-2,0),B(2,0),點(diǎn)P為動(dòng)點(diǎn),且直線AP與直線BP的斜率之積為-.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)D(1,0)的直線l交軌跡C于不同的兩點(diǎn)M,N,△MON的面積是否存在最大值?若存在,求出△MON的面積的最大值及相應(yīng)的直線方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知頂點(diǎn)為原點(diǎn)的拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合與在第一和第四象限的交點(diǎn)分別為.
(1)若△AOB是邊長(zhǎng)為的正三角形,求拋物線的方程;
(2)若,求橢圓的離心率;
(3)點(diǎn)為橢圓上的任一點(diǎn),若直線、分別與軸交于點(diǎn)和,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的中心為平面直角坐標(biāo)系xOy的原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1.
(1)求橢圓C的方程;
(2)若P為橢圓C上的動(dòng)點(diǎn),M為過(guò)P且垂直于x軸的直線上的一點(diǎn),=λ,求點(diǎn)M的軌跡方程,并說(shuō)明軌跡是什么曲線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com