在平面直角坐標(biāo)系中,曲線為參數(shù))。在以為原點,軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為,射線為,與的交點為,與除極點外的一個交點為。當(dāng)時,。

(1)求,的直角坐標(biāo)方程;

(2)設(shè)軸正半軸交點為,當(dāng)時,設(shè)直線與曲線的另一個交點為,求。

 

【答案】

(1)的直角坐標(biāo)方程是,的直角坐標(biāo)方程是.(2)

【解析】

試題分析:(1)由,所以的直角坐標(biāo)方程是--2分

由已知得的直角坐標(biāo)方程是,

當(dāng)時射線與曲線交點的直角坐標(biāo)為,         3分

的直角坐標(biāo)方程是.①          5分

(2)聯(lián)立,不是極點.     6分

又可得, 的參數(shù)方程為②         8分

將②帶入①得,設(shè)點的參數(shù)是,則

          10分

考點:本題考查了極坐標(biāo)與直角坐標(biāo)系的互化及參數(shù)的運(yùn)用

點評:極坐標(biāo)方面主要考查極坐標(biāo)方程和直角坐標(biāo)方程的互化、常見曲線的極坐標(biāo)方程間的簡單應(yīng)用.在參數(shù)方程方面主要考查了參數(shù)方程所表示的曲線類型、參數(shù)法求最值的思想及平面幾何中直線與圓等的位置關(guān)系問題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點,x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點,則MN的中點P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點
③直線l經(jīng)過無窮多個整點,當(dāng)且僅當(dāng)l經(jīng)過兩個不同的整點
④直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個整點的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點對稱的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,以點(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點,若AC與BD的交點F恰好為拋物線的焦點,則r=
 

查看答案和解析>>

同步練習(xí)冊答案