平面向量,若存在不同時(shí)為的實(shí)數(shù),使

,試確定函數(shù)的單調(diào)區(qū)間。

解析:

所以增區(qū)間為;減區(qū)間為。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•天河區(qū)三模)設(shè)m∈R,在平面直角坐標(biāo)系中,已知向量
a
=(x+
3
,my)
,向量
b
=(x-
3
,y)
,
a
b
,動(dòng)點(diǎn)M(x,y)的軌跡為曲線E.
(I)求曲線E的方程,并說(shuō)明該方程所表示曲線的形狀;
(II) 已知m=
3
4
,F(xiàn)(0,-1),直線l:y=kx+1與曲線E交于不同的兩點(diǎn)M、N,則△FMN的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的實(shí)數(shù)k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•嘉定區(qū)二模)如圖,已知點(diǎn)F(0,1),直線m:y=-1,P為平面上的動(dòng)點(diǎn),過(guò)點(diǎn)P作m的垂線,垂足為點(diǎn)Q,且
QP
QF
=
FP
FQ

(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)(文)過(guò)軌跡C的準(zhǔn)線與y軸的交點(diǎn)M作方向向量為
d
=(a,1)的直線m′與軌跡C交于不同兩點(diǎn)A、B,問(wèn)是否存在實(shí)數(shù)a使得FA⊥FB?若存在,求出a的范圍;若不存在,請(qǐng)說(shuō)明理由;
(3)(文)在問(wèn)題(2)中,設(shè)線段AB的垂直平分線與y軸的交點(diǎn)為D(0,y0),求y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:對(duì)于映射f:A→B,如果A中的不同元素有不同的象,且B中的每一個(gè)元素都有原象,則稱f:A→B為一一映射.如果存在對(duì)應(yīng)關(guān)系φ,使A到B成為一一映射,則稱A和B具有相同的勢(shì).給出下列命題:
①A={奇數(shù)},B={偶數(shù)},則A和B 具有相同的勢(shì);
②A是直角坐標(biāo)系平面內(nèi)所有點(diǎn)形成的集合,B是復(fù)數(shù)集,則A和B 不具有相同的勢(shì);
③若A={
a
,
b
},其中
a
b
是不共線向量,B={
c
|
c
a
,
b
共面的任意向量},則A和B不可能具有相同的勢(shì);
④若區(qū)間A=(-1,1),B=(-∞,+∞),則A和B具有相同的勢(shì).
其中真命題為
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓的圓心為M,過(guò)點(diǎn)P(0,2)的斜率為k的直線與圓M相交于不同的兩點(diǎn)A、B.

(1)求k的取值范圍;

(2)是否存在常數(shù)k,使得向量平行?若存在,求k值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年上海市長(zhǎng)寧、嘉定區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

如圖,已知點(diǎn)F(0,1),直線m:y=-1,P為平面上的動(dòng)點(diǎn),過(guò)點(diǎn)P作m的垂線,垂足為點(diǎn)Q,且
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)(文)過(guò)軌跡C的準(zhǔn)線與y軸的交點(diǎn)M作方向向量為=(a,1)的直線m′與軌跡C交于不同兩點(diǎn)A、B,問(wèn)是否存在實(shí)數(shù)a使得FA⊥FB?若存在,求出a的范圍;若不存在,請(qǐng)說(shuō)明理由;
(3)(文)在問(wèn)題(2)中,設(shè)線段AB的垂直平分線與y軸的交點(diǎn)為D(0,y),求y的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案