P是橢圓上異于長(zhǎng)軸端點(diǎn)A,的一點(diǎn),直線PA,P分別交橢圓右準(zhǔn)線于M,,若F是橢圓的右焦點(diǎn),求證∠MF=

答案:
解析:

證:設(shè)橢圓方程為=1(a>b>0),P().則

  

  

  ∵


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若橢圓的方程是:
x2
a2
+
y2
b2
=1(a>b>0),它的左、右焦點(diǎn)依次為F1、F2,P是橢圓上異于長(zhǎng)軸端點(diǎn)的任意一點(diǎn).在此條件下我們可以提出這樣一個(gè)問(wèn)題:“設(shè)△PF1F2的過(guò)P角的外角平分線為l,自焦點(diǎn)F2引l的垂線,垂足為Q,試求Q點(diǎn)的軌跡方程?”
對(duì)該問(wèn)題某同學(xué)給出了一個(gè)正確的求解,但部分解答過(guò)程因作業(yè)本受潮模糊了,我們?cè)?br />精英家教網(wǎng)
這些模糊地方劃了線,請(qǐng)你將它補(bǔ)充完整.
解:延長(zhǎng)F2Q 交F1P的延長(zhǎng)線于E,據(jù)題意,
E與F2關(guān)于l對(duì)稱,所以|PE|=|PF2|.
所以|EF1|=|PF1|+|PE|=|PF1|+|PF2|=
 
,
在△EF1F2中,顯然OQ是平行于EF1的中位線,
所以|OQ|=
1
2
|EF1|=
 
,
注意到P是橢圓上異于長(zhǎng)軸端點(diǎn)的點(diǎn),所以Q點(diǎn)的軌跡是
 
,
其方程是:
 

(2)如圖2,雙曲線的方程是:
x2
a2
-
y2
b2
=1(a,b>0),它的左、右焦點(diǎn)依次為F1、F2,P是雙曲線上異于實(shí)軸端點(diǎn)的任意一點(diǎn).請(qǐng)你試著提出與(1)類似的問(wèn)題,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是橢圓上異于長(zhǎng)軸端點(diǎn)的任意一點(diǎn),F(xiàn)1、F2分別是其左、右焦點(diǎn),O為橢圓中心,則為(    )

A.25       B.16             C.9                     D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖北省宜昌一中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知P是橢圓上異于長(zhǎng)軸端點(diǎn)A、B的任意點(diǎn),若直線PA、PB的斜率乘積kPA•kPB=-,則該橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是橢圓上異于長(zhǎng)軸端點(diǎn)的任意一點(diǎn),F(xiàn)1、F2分別是其左、右焦點(diǎn),O為中心,則 ___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案