對于定義在實數(shù)集上的兩個函數(shù),若存在一次函數(shù)使得,對任意的,都有,則把函數(shù)的圖像叫函數(shù)的“分界線”,F(xiàn)已知(,為自然對數(shù)的底數(shù)),
(1)求的遞增區(qū)間;
(2)當時,函數(shù)是否存在過點的“分界線”?若存在,求出函數(shù)的解析式,若不存在,請說明理由。
(1)若遞增區(qū)間為,若遞增區(qū)間為,若,則遞增區(qū)間為若遞增區(qū)間為(2)存在函數(shù)的圖像是函數(shù)過點的“分界線”。
解析試題分析:(1),
由得
①若,則,此時的遞增區(qū)間為;
②若,則或,此時的遞增區(qū)間為;
③若,則的遞增區(qū)間為;
④若,則或,此時的遞增區(qū)間為。
(2)當時,,假設(shè)存在實數(shù),使不等式對恒成立,
由得到對恒成立,
則,得,
下面證明對恒成立。
設(shè),,,
且時,,,
時,,
所以,即對恒成立。
綜上,存在函數(shù)的圖像是函數(shù)過點的“分界線”。
考點:函數(shù)單調(diào)區(qū)間及不等式恒成立
點評:第一小題求單調(diào)區(qū)間針對于不同的值對應(yīng)不同的極值點,因此需對值分情況討論以求單調(diào)性;第二問在正確理解給定信息的基礎(chǔ)上將問題轉(zhuǎn)化為不等式恒成立問題,進而轉(zhuǎn)化為函數(shù)最值,可利用導(dǎo)數(shù)這一工具求解
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知.
(1) 求函數(shù)在上的最小值;
(2) 對一切,恒成立,求實數(shù)a的取值范圍;
(3) 證明:對一切,都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)是定義在R上的奇函數(shù),并且當x∈(0,+∞)時,f(x)=2x.
(1)求f(log2)的值;
(2)求f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知正比例函數(shù)y=2x的圖像l1與反比例函數(shù)y=的圖像相交于點A(a,2),將直線l1向上平移3個單位得到的直線l2與雙曲線相交于B、C兩點(點B在第一象限),與y軸交于點D.
(1)求反比例函數(shù)的解析式;
(2)求△DOB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中。
(1)當a=1時,求它的單調(diào)區(qū)間;
(2)當時,討論它的單調(diào)性;
(3)若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是函數(shù)的一個極值點。
(1)求與的關(guān)系式(用表示),并求的單調(diào)區(qū)間;
(2)設(shè),若存在,使得成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1)當時,求函數(shù)的值域;
(2)若函數(shù)是(-,+)上的減函數(shù),求實數(shù)的高考資源網(wǎng)取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),且對任意的實數(shù)都有成立.
(1)求實數(shù)的值;
(2)利用函數(shù)單調(diào)性的定義證明函數(shù)在區(qū)間上是增函數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com