長方體ABCD-A1B1C1D1,AB=2,AD=2,AA1=
6
,則點(diǎn)D到平面ACD1的距離是( 。
A.
1
2
B.
3
2
C.
6
2
D.2
以D為原點(diǎn),以DA為x軸,以DC為y軸,以DD1為z軸,
建立空間直角坐標(biāo)系,
∵長方體ABCD-A1B1C1D1,AB=2,AD=2,AA1=
6
,
∴A(2,0,0),C(0,2,0),D1(0,0,
6
),D(0,0,0),
AD1
=(-2,0,
6
),
AC
=(-2,2,0),
AD
=(-2,0,0),
設(shè)平面ACD1的法向量
n
=(x,y,z),
n
AD1
=-2x+
6
z=0
n
AC
=-2x+2y=0
,取x=1,得
n
=(1,1,
6
3
),
∴點(diǎn)D到平面ACD1的距離是d=
|
n
AD
|
|
n
|
=
|-2|
8
3
=
6
2

故選:C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為直線,為平面,給出下列命題
         ②
         ④
其中真命題的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正四面體ABCD的棱長為a.
(1)求證:AC⊥BD
(2)求AC與BD的距離.
(3)求它的內(nèi)切球的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知棱長為a的實(shí)心正四面體模型的一條棱AB在桌面α內(nèi),設(shè)點(diǎn)P是模型表面上任意一點(diǎn),記P到桌面α的距離的最大值為h,則h的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體ABCD-A1B1C1D1棱長為a,則點(diǎn)C1到平面A1BD的距離是(  )
A.
2
2
a
B.
3
3
a
C.
3
a
D.
2
3
3
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,P是正方形ABCD所在平面外一點(diǎn),且PD⊥AD,PD⊥DC,PD=3,AD=2,若M、N分別是AB、PC的中點(diǎn).
(1)求證:MN⊥DC;
(2)求點(diǎn)M到平面PAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知平面α的一個(gè)法向量
n
=(-2,-2,1),點(diǎn)A(-1,3,0)在α內(nèi),則P(-2,1,4)到α的距離為( 。
A.10B.3C.
8
3
D.
10
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AB1⊥BC1,AB=CC1=1,BC=2.
(1)求證:A1C1⊥AB;
(2)求點(diǎn)B1到平面ABC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1)所示,在直角梯形ABCP中,BCAP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分別為線段PC、PD、BC的中點(diǎn),現(xiàn)將△PDC折起,使平面PDC⊥平面ABCD(圖(2)).
(1)求證:AP平面EFG;
(2)若點(diǎn)Q是線段PB的中點(diǎn),求證:PC⊥平面ADQ;
(3)求三棱錐C-EFG的體積.

查看答案和解析>>

同步練習(xí)冊答案