【題目】如果定義在R上的函數f(x)滿足:對于任意x1≠x2 , 都有xlf(xl)+x2f(x2)≥xlf(x2)+x2f(xl),則稱f(x)為“H函數”,給出下列函數: ①y=﹣x3+x+l;
②y=3x﹣2(sinx﹣cosx);
③y=l﹣ex;
④f(x)= ;
⑤y=
其中“H函數”的個數有( )
A.3個
B.2個
C.l個
D.0個
【答案】B
【解析】解:根據題意,對于x1f(x1)+x2f(x2)≥x1f(x2)+x2f(x1), 則有f(x1)(x1﹣x2)﹣f(x2)(x1﹣x2)≥0,
即[f(x1)﹣f(x2)](x1﹣x2)≥0,
分析可得:若函數f(x)為“H函數”,則函數f(x)為增函數或常數函數;
對于①、y=﹣x3+x+l,有y′=﹣3x2+l,不是增函數也不是常數函數,則其不是“H函數”,
對于②、y=3x﹣2(sinx﹣cosx);有y′=3﹣2(sinx+cosx)=3﹣2 sin(x+ ),有y′≥0,
y=3x﹣2(sinx﹣cosx)為增函數,則其是“H函數”,
對于③、y=l﹣ex=﹣ex+1,是減函數,則其不是“H函數”,
對于④、f(x)= ,當x<1時是常數函數,當x≥1時是增函數,則其是“H函數”,
對于⑤、y= ,當x≠0時,y= ,當x>1和x<﹣1時,函數為減函數,故其不是增函數也不是常數函數,則其不是“H函數”,
綜合可得:有2個是“H函數”,
故選:B.
【考點精析】認真審題,首先需要了解函數單調性的判斷方法(單調性的判定法:①設x1,x2是所研究區(qū)間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較).
科目:高中數學 來源: 題型:
【題目】已知△ABC中,a,b,c分別為角A,B,C的對邊,csinC﹣asinA=( c﹣b)sinB.
(Ⅰ)求角A;
(Ⅱ)若a=1,求三角形ABC面積S的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在△ABC中,M是邊BC的中點,tan∠BAM= ,cos∠AMC=﹣ (Ⅰ)求角B的大小;
(Ⅱ)若角∠BAC= ,BC邊上的中線AM的長為 ,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)在(m,n)上的導函數為g(x),x∈(m,n),g(x)若的導函數小于零恒成立,則稱函數f(x)在(m,n)上為“凸函數”.已知當a≤2時, ,在x∈(﹣1,2)上為“凸函數”,則函數f(x)在(﹣1,2)上結論正確的是( )
A.既有極大值,也有極小值
B.有極大值,沒有極小值
C.沒有極大值,有極小值
D.既無極大值,也沒有極小值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex+ax+b(a,b∈R)在x=ln2處的切線方程為y=x﹣2ln2. (Ⅰ)求函數f(x)的單調區(qū)間;
(Ⅱ)若k為差數,當x>0時,(k﹣x)f'(x)<x+1恒成立,求k的最大值(其中f'(x)為f(x)的導函數).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓E的方程為 +y2=1(a>1),O為坐標原點,直線l與橢圓E交于點A,B,M為線段AB的中點.
(1)若A,B分別為E的左頂點和上頂點,且OM的斜率為﹣ ,求E的標準方程;
(2)若a=2,且|OM|=1,求△AOB面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費,超過200度但不超過400度的部分按0.8元/度收費,超過400度的部分按1.0元/度收費.
(1)求某戶居民用電費用 (單位:元)關于月用電量 (單位:度)的函數解析式;
(2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的占80%,求 的值;
(3)在滿足(2)的條件下,估計1月份該市居民用戶平均用電費用(同一組中的數據用該組區(qū)間的中點值作代表).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在三棱柱ABC﹣A1B1C1中,B1B⊥平面ABC,∠ABC=90°,B1B=AB=2BC=4,D、E分別是B1C1 , A1A的中點.
(1)求證:A1D∥平面B1CE;
(2)設M是的中點,N在棱AB上,且BN=1,P是棱AC上的動點,直線NP與平面MNC所成角為θ,試問:θ的正弦值存在最大值嗎?若存在,請求出 的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義域為R的函數 f (x)的導函數為f'(x),且滿足f'(x)﹣2f (x)>4,若 f (0)=﹣1,則不等式f(x)+2>e2x的解集為( )
A.(0,+∞)
B.(﹣1,+∞)
C.(﹣∞,0)
D.(﹣∞,﹣1)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com