精英家教網 > 高中數學 > 題目詳情
1.下列四個函數中在(0,+∞)上為增函數的是(  )
A.f(x)=3-xB.f(x)=(x-1)2C.f(x)=$\frac{1}{x}$D.f(x)=x2+2x

分析 根據常見函數函數的性質分別判斷即可.

解答 解:對于A:f(x)在R遞減,不合題意;
對于B:f(x)的對稱軸是x=1,在(0,1)遞減,不合題意;
對于C:f(x)在(0,+∞)遞減,不合題意;
對于D:f(x)的對稱軸是x=-1,在(0,+∞)遞增,符合題意;
故選:D.

點評 本題考查了常見函數的性質,考查函數的單調性問題,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

11.已知數列{an}的前n項和為Sn,且a1=2,nan+1=2(n+1)an
(1)記bn=$\frac{{a}_{n}}{n}$,求數列{bn}的通項bn;      
(2)求通項an及前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.已知函數f(x)=2x,若從區(qū)間[-2,2]上任取一個實數x,則使不等式f(x)>2成立的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2016}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.(1)已知角α的終邊上一點P的坐標為$(-\sqrt{3},2)$,求sinα,cosα和tanα.
(2)在[0°,720°]中與-21°16′終邊相同的角有哪些?

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.設i是虛數單位,${i^7}-\frac{2}{i}$=( 。
A.-iB.-3iC.iD.3i

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.根據條件回答下列問題:
(1)求函數y=lg(tanx)的定義域;
(2)求函數$y=\frac{3sinx+1}{sinx-2}$的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.函數$f(x)=\frac{3^x}{{{3^x}+\sqrt{3}}}$,則$f(\frac{1}{2016})+f(\frac{2}{2016})+…+f(\frac{2015}{2016})+f(\frac{2016}{2016})$=1009-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.已知向量$\overrightarrow a=(cosα,sinα)$,$\overrightarrow b=(cosβ,sinβ)$,且$α-β=\frac{2π}{3}$,則$\overrightarrow a$與$\overrightarrow a+\overrightarrow b$的夾角為(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.設x,y滿足約束條件$\left\{\begin{array}{l}{2x-y+2≥0}\\{8x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$
(1)求目標函數z=3x-y的最大值;
(2)若目標函數z=ax+by(a>0,b>0)的最大值為6,求$\frac{1}{a}+\frac{4}$的最小值.

查看答案和解析>>

同步練習冊答案