(2012•蘭州模擬)三棱錐P-ABC的三條側(cè)棱PA、PB、PC兩兩互相垂直,且長(zhǎng)度分別為3、4、5,則三棱錐P-ABC外接球的表面積是
50π
50π
分析:以PA、PB、PC為過(guò)同一頂點(diǎn)的三條棱,作長(zhǎng)方體如圖,則長(zhǎng)方體的外接球同時(shí)也是三棱錐P-ABC外接球.算出長(zhǎng)方體的對(duì)角線即為球直徑,結(jié)合球的表面積公式,可算出三棱錐P-ABC外接球的表面積.
解答:解:以PA、PB、PC為過(guò)同一頂點(diǎn)的三條棱,作長(zhǎng)方體如圖
則長(zhǎng)方體的外接球同時(shí)也是三棱錐P-ABC外接球.
∵長(zhǎng)方體的對(duì)角線長(zhǎng)為
PA2+PB2+PC2
=
32+42+52
=5
2

∴球直徑為5
2
,半徑R=
5
2
2

因此,三棱錐P-ABC外接球的表面積是4πR2=4π×(
5
2
2
2=50π
故答案為:50π
點(diǎn)評(píng):本題給出三棱錐的三條側(cè)棱兩兩垂直,求它的外接球的表面積,著重考查了長(zhǎng)方體對(duì)角線公式和球的表面積計(jì)算等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•蘭州模擬)若函數(shù)f(x)=sinωx+
3
cosωx,x∈R
,又f(α)=f(β)=2,且|α-β|的最小值等于3π,則正數(shù)ω的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•蘭州模擬)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
一條漸近線的傾斜角為
π
3
,離心率為e,則
a2+e
b
的最小值為
2
6
3
2
6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•蘭州模擬)某市為了推動(dòng)全民健身運(yùn)動(dòng)在全市的廣泛開(kāi)展,該市電視臺(tái)開(kāi)辦了健身競(jìng)技類欄目《健身大闖關(guān)》,規(guī)定參賽者單人闖關(guān),參賽者之間相互沒(méi)有影響,通過(guò)關(guān)卡者即可獲獎(jiǎng).現(xiàn)有甲、乙、丙3人參加當(dāng)天的闖關(guān)比賽,已知甲獲獎(jiǎng)的概率為
3
5
,乙獲獎(jiǎng)的概率為
2
3
,丙獲獎(jiǎng)而甲沒(méi)有獲獎(jiǎng)的概率為
1
5

(1)求三人中恰有一人獲獎(jiǎng)的概率;
(2)記三人中至少有兩人獲獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•蘭州模擬)若(1-2x)2012=a0+a1x+a2x2+…+a2012x2012,則
a1
2
+
a2
22
+…+
a2012
22012
=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•蘭州模擬)已知F為雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點(diǎn),P為雙曲線C右支上一點(diǎn),且位于x軸上方,M為直線x=-
a2
c
上一點(diǎn),O為坐標(biāo)原點(diǎn),已知
OP
=
OF
+
OM
,且|
OF
|=|
OM
|
,則雙曲線C的離心率為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案