已知四點(diǎn)A(-1,0),B(1,0),C(1,1-λ),D(λ,4).設(shè)直線AC和直線BD的交點(diǎn)為M,則點(diǎn)M的軌跡方程為

[  ]

A.x2=1

B.x2=1

C.x2+y2=1

D.x2=1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知四點(diǎn)A(2,0),B(-2,0),C(0,-2),D(-2,-2),把坐標(biāo)系平面沿y軸折為直二面角.
(1)求證:BC⊥AD;
(2)求二面角C-AD-O的大小;
(3)求三棱錐C-AOD的體積.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知四點(diǎn)A(2,0),B(-2,0),C(0,-2),D(-2,-2),把坐標(biāo)系平面沿y軸折為直二面角.
(1)求證:BC⊥AD;
(2)求三棱錐C-AOD的體積.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•淄博一模)在平面直角坐標(biāo)系內(nèi)已知兩點(diǎn)A(-1,0)、B(1,0),若將動點(diǎn)P(x,y)的橫坐標(biāo)保持不變,縱坐標(biāo)擴(kuò)大到原來的
2
倍后得到點(diǎn)Q(x,
2
y)
,且滿足
AQ
BQ
=1

(I)求動點(diǎn)P所在曲線C的方程;
(II)過點(diǎn)B作斜率為-
2
2
的直線l交曲線C于M、N兩點(diǎn),且
OM
+
ON
+
OH
=
0
,又點(diǎn)H關(guān)于原點(diǎn)O的對稱點(diǎn)為點(diǎn)G,試問M、G、N、H四點(diǎn)是否共圓?若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)一模)已知兩點(diǎn)A(-1,0)、B(1,0),點(diǎn)P(x,y)是直角坐標(biāo)平面上的動點(diǎn),若將點(diǎn)P的橫坐標(biāo)保持不變、縱坐標(biāo)擴(kuò)大到
2
倍后得到點(diǎn)Q(x,
2
y
)滿足
AQ
BQ
=1

(1)求動點(diǎn)P所在曲線C的軌跡方程;
(2)過點(diǎn)B作斜率為-
2
2
的直線l交曲線C于M、N兩點(diǎn),且滿足
OM
+
ON
+
OH
=
0
,又點(diǎn)H關(guān)于原點(diǎn)O的對稱點(diǎn)為點(diǎn)G,試問四點(diǎn)M、G、N、H是否共圓,若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案