9.已知f(x)=|x-2|.
(Ⅰ)求不等式f(x+1)+f(x+3)>2的解集M;
(Ⅱ)若a∈M,|b|<2,求證:$f(ab)<|a|•f(\frac{a})$.

分析 (Ⅰ)f(x+1)+f(x+3)=|x-1|+|x+1|,而|x-1|+|x+1|≥|(x-1)-(x+1)|=2,當(dāng)且僅當(dāng)|(x-1)(x+1)≤0,即-1≤x≤1時取等號.即可得出結(jié)論;
(Ⅱ)利用作差法進行證明即可.

解答 (Ⅰ)解:f(x+1)+f(x+3)=|x-1|+|x+1|,而|x-1|+|x+1|≥|(x-1)-(x+1)|=2,
當(dāng)且僅當(dāng)|(x-1)(x+1)≤0,即-1≤x≤1時取等號.
因此M={x|x<-1或x>1}.    …(5分)
(Ⅱ)證明:$f(ab)<|a|•f(\frac{a})?|ab-2|<|b-2a|$,
因為a∈M,|b|<2,所以(ab-2)2-(b-2a)2=a2b2-4a2-b2+4=(a2-1)(b2-4)<0.
因此|b-a|<|b-2a|,故$f(ab)<|a|•f(\frac{a})$.…(10分)

點評 本題考查絕對值不等式的解法,考查不等式的證明,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.冪函數(shù)f(x)=(m2-4m+4)x${\;}^{{m^2}-6m+8}}$在(0,+∞)為增函數(shù),則m的值為( 。
A.1或3B.1C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.過雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的右焦點作傾斜角為45°的弦AB.求:
(1)弦AB的中點C到右焦點F2的距離;
(2)弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知焦點為F1(-$\sqrt{2}$,0),F(xiàn)2($\sqrt{2}$,0)的橢圓過點P($\sqrt{2}$,1),A是直線PF1與橢圓的另一個交點,則三角形PAF2的周長是( 。
A..6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=$\frac{a}{{2}^{x}}$+$\frac{{2}^{x}}{a}$的圖象關(guān)于y軸對稱,且a>0.
(1)求a的值;
(2)求f(x)在[0,2]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}-2x+3,x>0}\\{-{x^2}+ax-3,x<0}\end{array}}$為奇函數(shù),則實數(shù)a=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知全集U=R,集合$A=\{\left.x\right|\frac{1}{2}≤{2^x}≤\left.4\right\}$,B={x|1<x<6}
(1)求A∩∁UB;
(2)已知C={x|a≤x≤a+1},若A∩C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的前n項和Sn滿足2Sn=3an-3.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=2an-3n,求數(shù)列{bn}的n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.用秦九韶算法計算多項式f(x)=12+35x-8x2+6x4+5x5+3x6在X=-4時的值時,V3的值為( 。
A.-144B.-136C.-57D.34

查看答案和解析>>

同步練習(xí)冊答案