【題目】如圖,已知圓,點是圓上任意一點,線段的垂直平分線和半徑相交于.
(1)求動點的軌跡的方程;
(2)已知是軌跡的三個動點,點在一象限, 與關(guān)于原點對稱,且,問的面積是否存在最小值?若存在,求出此最小值及相應(yīng)直線的方程;若不存在,請說明理由.
【答案】(1);(2).
【解析】試題分析:(1)連接,根據(jù)題意, ,則 ,可得動點的軌跡是以為焦點,長軸長為的橢圓,即可求出動點的軌跡的方程;(2)設(shè)直線的方程為,與橢圓方程聯(lián)立,求出的坐標,同理可得點的坐標,進而表示出的面積,利用基本不等式,即可得出結(jié)論.
試題解析:(1)∵Q在線段PF的垂直平分線上,∴|QP|=|QF|,得|QE|+|QF|=|QE|+|QP|=|PE|=4,
又|EF|=2<4,∴Q的軌跡是以E,F為焦點,長軸長為4的橢圓,∴Г: +y2=1.
(2)由點A在第一象限,B與A關(guān)于原點對稱,設(shè)直線AB的方程為y=kx(k>0),
∵|CA|=|CB|,∴C在AB的垂直平分線上,∴直線OC的方程為y=-x. ,同理可得|OC|=
當(dāng)且僅當(dāng)k=1時取等號,∴S△ABC≥.
綜上,當(dāng)直線AB的方程為y=x時,△ABC的面積有最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,圓。
(1)若點在圓內(nèi),求的取值范圍;
(2)若過點的圓的切線只有一條,求切線的方程;
(3)當(dāng)時,過點的直線被圓截得的弦長為,求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),在以直角坐標系的原點為極點, 軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.
(Ⅰ)求曲線的直角坐標方程和直線的普通方程;
(Ⅱ)若直線與曲線相交于, 兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某市主辦的科技知識競賽的學(xué)生成績中隨機選取了40名學(xué)生的成績作為樣本,已知這些成績?nèi)吭?0分至100分之間,現(xiàn)將成績按如下方式分成6組:第一組;第二組;;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.
求成績在區(qū)間內(nèi)的學(xué)生人數(shù);
估計這40名學(xué)生成績的眾數(shù)和中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,河的兩岸分別有生活小區(qū)和,其中,三點共線,與的延長線交于點,測得,,,,,若以所在直線分別為軸建立平面直角坐標系則河岸可看成是曲線(其中是常數(shù))的一部分,河岸可看成是直線(其中為常數(shù))的一部分.
(1)求的值.
(2)現(xiàn)準備建一座橋,其中分別在上,且,的橫坐標為.寫出橋的長關(guān)于的函數(shù)關(guān)系式,并標明定義域;當(dāng)為何值時,取到最小值?最小值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={x|x<-3,或x>5},P={x|(x-a)·(x-8)≤0}.
(1)求M∩P={x|5<x≤8}的充要條件;
(2)求實數(shù)a的一個值,使它成為M∩P={x|5<x≤8}的一個充分但不必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(Ⅰ)求橢圓的方程.
(Ⅱ)若, 是橢圓上兩個不同的動點,且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的上頂點與拋物線()的焦點重合.
(1)設(shè)橢圓和拋物線交于, 兩點,若,求橢圓的方程;
(2)設(shè)直線與拋物線和橢圓均相切,切點分別為, ,記的面積為,求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com