直線l:y=k(x+3)與圓O:x2+y2=4交于A、B兩點(diǎn),|AB|=2數(shù)學(xué)公式,則實(shí)數(shù)k=________.


分析:求出圓心到直線l的距離d,由弦長公式求得 d2=2,即 =,解方程求出k值.
解答:l:y=k(x+3)即 kx-y+3k=0,設(shè)圓心到直線l的距離為d,則 d=,
由弦長公式得,|AB|=2=2 =2,∴d2=2,
=,k2=,k=,
故答案為
點(diǎn)評:本題考查直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式,弦長公式的應(yīng)用,得到 =,這是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直角三角形PAB的直角頂點(diǎn)為B,點(diǎn)P的坐標(biāo)為(3,0),點(diǎn)B在y軸上,點(diǎn)A在x軸的負(fù)半軸上,在BA的延長線上取一點(diǎn)C,使
BC
=3
BA

(1)當(dāng)B在y軸上移動時,求動點(diǎn)C的軌跡方程;
(2)若直線l:y=k(x-1)與點(diǎn)C的軌跡交于M、N兩點(diǎn),設(shè)D(-1,0),當(dāng)∠MDN為銳角時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:y=k(x-2)+2與圓x2+y2-2x-2y=0有兩個不同的公共點(diǎn),則k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•成都三模)已知O為坐標(biāo)原點(diǎn),點(diǎn)E、F的坐標(biāo)分別為(-
2
,0)、(
2
,0),點(diǎn)A、N滿足
AE
=2
3
ON
=
1
2
(
OA
+
OF
)
,過點(diǎn)N且垂直于AF的直線交線段AE于點(diǎn)M,設(shè)點(diǎn)M的軌跡為C.
(1)求軌跡C的方程;
(2)若軌跡C上存在兩點(diǎn)P和Q關(guān)于直線l:y=k(x+1)(k≠0)對稱,求k的取值范圍;
(3)在(2)的條件下,設(shè)直線l與軌跡C交于不同的兩點(diǎn)R、S,對點(diǎn)B(1,0)和向量a=(-
3
,3k),求
BR
BS
-|a|2
取最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x+1)2+(y-2)2=4
(1)若直線l:y=k(x-2)與圓C有且只有一個公共點(diǎn),求直線l的斜率k的值;
(2)若直線m:y=kx+2被圓C截得的弦AB滿足OA⊥OB(O是坐標(biāo)原點(diǎn)),求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=8x,O為坐標(biāo)原點(diǎn),動直線l:y=k(x+2)與拋物線C交于不同兩點(diǎn)A,B
(1)求證:
OA
OB
為常數(shù);
(2)求滿足
OM
=
OA
+
OB
的點(diǎn)M的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案