(本小題滿分13分)已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足關(guān)系式(2+t)Sn+1-tSn=2t+4(t≠-2,t≠0,n=1,2,3,…)
(1)當(dāng)a1為何值時(shí),數(shù)列{an}是等比數(shù)列;
(2)在(1)的條件下,設(shè)數(shù)列{an}的公比為f(t),作數(shù)列{bn}使b1=1,bn=f(bn-1)(n=2,
3,4,…),求bn;
(3)在(2)條件下,如果對(duì)一切n∈N+,不等式bn+bn+1<恒成立,求實(shí)數(shù)c的取值范圍.
解析:(1)(2+t)Sn+1-tSn=2t+4 、
n≥2時(shí),(2+t)Sn-tSn-1=2t+4 、
兩式相減:(2+t)(Sn+1-Sn)-t(Sn-Sn-1)=0,
(2+t)an+1-tan=0,=.即n≥2時(shí),為常數(shù).
當(dāng)n=1時(shí),(2+t)S2-tS1=2t+4,
(2+t)(a2+a1)-ta1=2t+4,解得a2=.
要使{an}是等比數(shù)列,必須=.
∴=,解得a1=2.
(2)由(1)得,f(t)=,因此有bn=,
即=+1,整理得+1=2(+1).
則數(shù)列{+1}是首項(xiàng)為+1=2,公比為2的等比數(shù)列,+1=2?2n-1=2n,
bn=.
(3)把bn=,bn+1=代入得:+<,
即c>+,
要使原不等式恒成立,c必須比上式右邊的最大值大.
∴+=+=++,單調(diào)遞減.
∴+的值隨n的增大而減小,則當(dāng)n=1時(shí),+取得最大值4.
因此,實(shí)數(shù)c的取值范圍是c>4.年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,為的中點(diǎn)。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).
(1) 求函數(shù)的表達(dá)式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項(xiàng)和
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com