精英家教網 > 高中數學 > 題目詳情
已知拋物線y2=4x上一點到焦點的距離為5,這點的坐標為______.
∵拋物線方程為y2=4x,
∴焦點為F(1,0),準線為l:x=-1
設所求點坐標為P(x,y)
作PQ⊥l于Q
根據拋物線定義可知P到準線的距離等于P、Q的距離
即x+1=5,解之得x=4,
代入拋物線方程求得y=±4
故點P坐標為:(4,±4)
故答案為:(4,4)或(4,-4).
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知過拋物線y2=2px(p>0)的焦點,斜率為2
2
的直線交拋物線于A(x1,y1)和B(x2,y2)(x1<x2)兩點,且|AB|=9,
(1)求該拋物線的方程;
(2)O為坐標原點,C為拋物線上一點,若
OC
=
OA
OB
,求λ的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設直線l:2x+y+2=0關于原點對稱的直線為l′,若l′與橢圓x2+
y2
4
=1的交點為A、B,點P為橢圓上的動點,則使△PAB的面積為
1
2
的點P的個數為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知△FAB,點F的坐標為(1,0),點A、B分別在圖中拋物線y2=4x及圓(x-1)2+y2=4的實線部分上運動,且AB總是平行于x軸,那么△FAB的周長的取值范圍為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,點A,B在拋物線y2=2px(p>0)上,且OA⊥OB,OD⊥AB交AB于D,則點D在( 。
A.某個圓上運動B.某個橢圓上運動
C.某個雙曲線上運動D.某個拋物線上運動

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知實數x、y滿足方程(x-a+1)2+(y-1)2=1,當0≤y≤b(b∈R)時,由此方程可以確定一個偶函數y=f(x),則拋物線y=-
1
2
x2
的焦點F到點(a,b)的軌跡上點的距離最大值為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

點A(3,2)為定點,點F是拋物線y2=4x的焦點,點P在拋物線y2=4x上移動,若|PA|+|PF|取得最小值,則點P的坐標為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設拋物線y2=2px(p>0)上各點到直線3x+4y+12=0的距離的最小值為1,則p=______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

過拋物線y2=8x的焦點作傾斜角45°的直線,則被拋物線截得的弦長為( 。
A.8B.16C.32D.64

查看答案和解析>>

同步練習冊答案