精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=lg(ax-bx)(a>1>b>0).
(1)求y=f(x)的定義域;
(2)在函數y=f(x)的圖象上是否存在不同的兩點,使得過這兩點的直線平行于x軸;
(3)當a,b滿足什么條件時,f(x)在(1,+∞)上恒取正值.

(1) f(x)的定義域是(0,+∞).
(2)函數y=f(x)的圖象上不存在不同兩點,使過這兩點的直線平行于x軸.
(3)當a≥b+1時,f(x)在(1,+∞)上恒取正值.

解析試題分析:(1)由ax-bx>0得(x>1,
∵a>1>b>0,∴>1,∴x>0.
∴f(x)的定義域是(0,+∞).
(2)任取x1、x2∈(0,+∞)且x1>x2
∵a>1>b>0,∴ax1>ax2>1,bx1<bx2<1
∴ax1-bx1>ax2-bx2>0
∴l(xiāng)g(ax1-bx1)>lg(ax2-bx2)
故f(x1)>f(x2)
∴f(x)在(0,+∞)上為增函數.
假設y=f(x)的圖象上存在不同的兩點A(x1,y1),B(x2,y2),使過A、B兩點的直線平行于x軸,則x1≠x2,y1=y2,這與f(x)是增函數矛盾.故函數y=f(x)的圖象上不存在不同兩點,使過這兩點的直線平行于x軸.
(3)∵f(x)是增函數,∴當x∈(1,+∞)時,f(x)>f(1).
這樣只需f(1)≥0,即lg(a-b)≥0,
∴a-b≥1.
即當a≥b+1時,f(x)在(1,+∞)上恒取正值.
考點:對數函數的性質,函數的單調性,函數的圖象,不等式恒成立問題。
點評:中檔題,本題綜合性較強,較全面的考查函數的圖象和性質。不等式的恒成立問題,往往通過研究函數的單調性及最值,使問題得到解決。本題研究函數的單調性,主要利用了增(減)函數的定義,遵循“設,作差,變形,定號,結論”等加以研究。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數在一個周期內的部分對應值如下表:















(I)求的解析式;
(II)設函數,,求的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某公司擬投資開發(fā)某種新能源產品,估計能獲得10萬元至1000萬元的投資收益.為加快開發(fā)進程,特制定了產品研制的獎勵方案:獎金(萬元)隨投資收益(萬元)的增加而增加,但獎金總數不超過9萬元,同時獎金不超過投資收益的20%. 
現給出兩個獎勵模型:①;②.
試分析這兩個函數模型是否符合公司要求?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

對于在區(qū)間 [ m,n ] 上有意義的兩個函數,如果對任意,均有,則稱在 [ m,n ] 上是友好的,否則稱在 [ m,n ]是不友好的.現有兩個函數(a > 0且),給定區(qū)間
(1)若在給定區(qū)間上都有意義,求a的取值范圍;
(2)討論在給定區(qū)間上是否友好.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設不等式的解集為A,且
(Ⅰ)求的值
(Ⅱ)求函數的最小值

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(1)化簡;
(2)已知,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為了在夏季降溫和冬季供暖時減少能源損耗,房屋的房頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費用為C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)=(0x10),若不建隔熱層,每年能源消耗費用為8萬元。設f(x)為隔熱層建造費用與20年的能源消耗費用之和。
(1)求k的值及f(x)的表達式;
(2)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某商場銷售某種商品的經驗表明,該商品每日的銷售量y(單位:千克)與銷售價格x (單位:元/千克)滿足關系式y=+10(x-6)2,(其中3<x<6,為常數,)已知銷售價格為5元/千克時,每日可售出該商品11千克。
(I)求的值;
(II)若該商品的成品為3元/千克,試確定銷售價格x的值,使商場每日銷售該商品所獲得的利潤最大。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某連鎖分店銷售某種商品,每件商品的成本為4元,并且每件商品需向總店交元(1≤a≤3)的管理費,預計當每件商品的售價為元(8≤x≤9)時,一年的銷售量為(10-x)2萬件.
(1)求該連鎖分店一年的利潤L(萬元)與每件商品的售價x的函數關系式L(x);
(2)當每件商品的售價為多少元時,該連鎖分店一年的利潤L最大,并求出L的最
大值M(a).

查看答案和解析>>

同步練習冊答案