如圖,棱長(zhǎng)為a的正方體對(duì)角線相交于點(diǎn)O,頂點(diǎn)A為坐標(biāo)原點(diǎn),AB、AD分別在x軸,y軸的正半軸上,試寫出點(diǎn)O的坐標(biāo).

答案:略
解析:

解:由立體幾何知識(shí),的交點(diǎn)為的中點(diǎn).

由圖可知,C兩點(diǎn)的坐標(biāo)分別為C(aa,0),又設(shè)O(x,yz)

由中點(diǎn)的坐標(biāo)公式,有

的交點(diǎn)O的坐標(biāo)為


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)現(xiàn)有一塊棱長(zhǎng)為a的正方體形的木料,如圖,M、N、P分別為AD、CD、BB1的中點(diǎn).現(xiàn)要沿過M、N、P三點(diǎn)的平面將木料鋸開.
(1)求作鋸面與平面AA1C1C的交線GH,其中G、H分別在C1C、AA1上(寫出作圖過程即可,不必證明),并說明GH與平面ABCD的關(guān)系,然后給出證明.
(2)若Q為C1D1的中點(diǎn).求點(diǎn)P到平面MNQ的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩個(gè)相同的正四棱錐組成如圖所示的幾何體,可放入棱長(zhǎng)為1的正方體內(nèi),使正四棱錐的底面ABCD與正方體的某一個(gè)面平行,且各頂點(diǎn)均在正方體的面上,則這樣的幾何體體積的可能值有(    )

A.1個(gè)                B.2個(gè)             C.3個(gè)             D.無窮多個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(9)兩相同的正四棱錐組成如圖1所示的幾何體,可放棱長(zhǎng)為1的正方體內(nèi),使正四棱錐的底面ABCD與正方體的某一個(gè)平面平行,且各頂點(diǎn)均在正方體的面上,則這樣的幾何體體積的可能值有

(A)1個(gè)    。˙)2個(gè)

(C)3個(gè)     (D)無窮多個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖北省高三第三次模擬考試(理科)數(shù)學(xué)卷 題型:選擇題

如圖,在棱長(zhǎng)為2的正方體內(nèi)有一個(gè)內(nèi)切球O,則過棱的中點(diǎn)、的直線與球面交點(diǎn)為,則兩點(diǎn)間的球面距離為(     )

  A.    B.    C.     D.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省上饒市重點(diǎn)中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

現(xiàn)有一塊棱長(zhǎng)為a的正方體形的木料,如圖,M、N、P分別為AD、CD、BB1的中點(diǎn).現(xiàn)要沿過M、N、P三點(diǎn)的平面將木料鋸開.
(1)求作鋸面與平面AA1C1C的交線GH,其中G、H分別在C1C、AA1上(寫出作圖過程即可,不必證明),并說明GH與平面ABCD的關(guān)系,然后給出證明.
(2)若Q為C1D1的中點(diǎn).求點(diǎn)P到平面MNQ的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案