設(shè)等差數(shù)列的前n項(xiàng)和為,且滿足條件
(1)求數(shù)列的通項(xiàng)公式;
(2)令,若對(duì)任意正整數(shù),恒成立,求的取值范圍.

(1)(2)

解析試題分析:(1))設(shè)等差數(shù)列的首項(xiàng)為,公差為d,利用解出與d,最后求出數(shù)列的通項(xiàng)公式;(2)先利用已知條件證明為遞減數(shù)列,然后再借助于恒成立得到,進(jìn)而求出的取值范圍.
試題解析:(1)設(shè),則解得: ∴
(2)∵

為遞減數(shù)列  ∴
恒成立,∴
 ∴
解得: 
考點(diǎn):等差數(shù)列的通項(xiàng)公式;遞減數(shù)列;不等式恒成立的問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

己知等比數(shù)列所有項(xiàng)均為正數(shù),首,且成等差數(shù)列.
(I)求數(shù)列的通項(xiàng)公式;
(II)數(shù)列的前n項(xiàng)和為,若,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的通項(xiàng)公式為,其中是常數(shù),且.
(1)數(shù)列是否一定是等差數(shù)列?如果是,其首項(xiàng)與公差是什么?并證明,如果不是說明理由.
(2)設(shè)數(shù)列的前項(xiàng)和為,且,,試確定的公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列為等差數(shù)列,且,數(shù)列的前項(xiàng)和為,
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等差數(shù)列中,,.
(1)求的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前項(xiàng)和為,且和1的等差中項(xiàng),等差數(shù)列滿足
(1)求數(shù)列,的通項(xiàng)公式;
(2)設(shè),數(shù)列的前n項(xiàng)和為,若對(duì)一切恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列的公差為,點(diǎn)在函數(shù)的圖象上().
(1)若,點(diǎn)在函數(shù)的圖象上,求數(shù)列的前項(xiàng)和;
(2)若,學(xué)科網(wǎng)函數(shù)的圖象在點(diǎn)處的切線在軸上的截距為,求數(shù)列的前 項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知首項(xiàng)都是1的兩個(gè)數(shù)列),滿足.
(1)令,求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列,設(shè)數(shù)列滿足 
(1)求數(shù)列的前項(xiàng)和為;
(2)若數(shù)列,若對(duì)一切正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案