【題目】給出下列命題:①函數(shù) 在上的值域為;②函數(shù)是奇函數(shù);③函數(shù)在上是減函數(shù);其中正確的個數(shù)為______.
【答案】0
【解析】
利用二次函數(shù)的圖像與性質(zhì)可判斷①的正誤,利用奇函數(shù)的定義域具有對稱性可判斷②的正誤,利用函數(shù)的單調(diào)性定義可判③的正誤.
解:對于①,∵函數(shù)y=(x﹣1)2+2的對稱軸為x=1,開口向上,
∴該函數(shù)在上先減后增,
又f(1)=2,f(3)=6,f(0)=3,
∴函數(shù)y=(x﹣1)2+2在上的值域為[2,6],故①錯誤;
對于②,∵函數(shù)y=x3中x∈(﹣1,1],其定義域不關(guān)于原點對稱,故該函數(shù)不是奇函數(shù),故②錯誤;
對于③,∵函數(shù)f(x)在(﹣∞,0),(0,+∞)上是減函數(shù),在R上不是減函數(shù),故③錯誤;
故答案為:0.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某貧困地區(qū)有1500戶居民,其中平原地區(qū)1050戶,山區(qū)450戶,為調(diào)查該地區(qū)2017年家庭收入情況,從而更好地實施“精準扶貧”,采用分層抽樣的方法,收集了150戶家庭2017年年收入的樣本數(shù)據(jù)(單位:萬元)
(I)應(yīng)收集多少戶山區(qū)家庭的樣本數(shù)據(jù)?
(Ⅱ)根據(jù)這150個樣本數(shù)據(jù),得到2017年家庭收入的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為, , , ,,.如果將頻率率視為概率,估計該地區(qū)2017年家庭收入超過1.5萬元的概率;
(Ⅲ)樣本數(shù)據(jù)中,由5戶山區(qū)家庭的年收入超過2萬元,請完成2017年家庭收入與地區(qū)的列聯(lián)表,并判斷是否有90%的把握認為“該地區(qū)2017年家庭年收入與地區(qū)有關(guān)”?
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
超過2萬元 | 不超過2萬元 | 總計 | |
平原地區(qū) | |||
山區(qū) | 5 | ||
總計 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個五個命題:
①“”是“”的充要條件
②對于命題,使得,則,均有;
③命題“若,則方程有實數(shù)根”的逆否命題為:“若方程
沒有實數(shù)根,則”;
④函數(shù)只有個零點;
⑤使是冪函數(shù),且在上單調(diào)遞減.
其中是真命題的個數(shù)為:
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果函數(shù)在上存在滿足,,則稱函數(shù)是在上的“雙中值函數(shù)”,已知函數(shù)是上的“雙中值函數(shù)”,則函數(shù)的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個結(jié)論:
①從1,2,3,4,5中任取2個不同的數(shù),事件“取到的2個數(shù)之和為偶數(shù)”,事件“取到的
2個數(shù)均為偶數(shù)”,則;
②某班共有45名學(xué)生,其中30名男同學(xué),15名女同學(xué),老師隨機抽查了5名同學(xué)的作業(yè),用表示抽查到的女生的人數(shù),則;
③設(shè)隨機變量服從正態(tài)分布,,則;
④由直線,,曲線及軸所圍成的圖形的面積是.
其中所有正確結(jié)論的序號為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小張經(jīng)營某一消費品專賣店,已知該消費品的進價為每件40元,該店每月銷售量(百件)與銷售單價x(元/件)之間的關(guān)系用下圖的一折線表示,職工每人每月工資為1000元,該店還應(yīng)交付的其它費用為每月10000元.
(1)把y表示為x的函數(shù);
(2)當銷售價為每件50元時,該店正好收支平衡(即利潤為零),求該店的職工人數(shù);
(3)若該店只有20名職工,問銷售單價定為多少元時,該專賣店可獲得最大月利潤?(注:利潤=收入-支出)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地合作農(nóng)場的果園進入盛果期,果農(nóng)利用互聯(lián)網(wǎng)電商渠道銷售蘋果,蘋果單果直徑不同則單價不同,為了更好的銷售,現(xiàn)從該合作農(nóng)場果園的蘋果樹上隨機摘下了50個蘋果測量其直徑,經(jīng)統(tǒng)計,其單果直徑分布在區(qū)間內(nèi)(單位:),統(tǒng)計的莖葉圖如圖所示:
(Ⅰ)按分層抽樣的方法從單果直徑落在,的蘋果中隨機抽取6個,則從,的蘋果中各抽取幾個?
(Ⅱ)從(Ⅰ)中選出的6個蘋果中隨機抽取2個,求這兩個蘋果單果直徑均在內(nèi)的概率;
(Ⅲ)以此莖葉圖中單果直徑出現(xiàn)的頻率代表概率,若該合作農(nóng)場的果園有20萬個蘋果約5萬千克待出售,某電商提出兩種收購方案:方案:所有蘋果均以5.5元/千克收購;方案:按蘋果單果直徑大小分3類裝箱收購,每箱裝25個蘋果,定價收購方式為:單果直徑在內(nèi)按35元/箱收購,在內(nèi)按45元/箱收購,在內(nèi)按55元/箱收購.包裝箱與分揀裝箱費用為5元/箱(該費用由合作農(nóng)場承擔(dān)).請你通過計算為該合作農(nóng)場推薦收益最好的方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()
(1)若在區(qū)間[0,1]上有最大值1和最小值-2.求a,b的值;
(2)在(1)條件下,若在區(qū)間上,不等式f(x) 恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角梯形中, , , , , 底面, 底面且有.
(1)求證: ;
(2)若線段的中點為,求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com