試題分析:構(gòu)造函數(shù)
,則
,所以函數(shù)
是增函數(shù),又
,所以
的解集是
,即
的解集是
.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
,函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)
在區(qū)間
上的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
.
(Ⅰ)當
時,求曲線
在點
處的切線方程;
(Ⅱ)當
時,若
在區(qū)間
上的最小值為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
.
(1)當
時,求函數(shù)
在
上的最大值;
(2)令
,若
在區(qū)間
上不單調(diào),求
的取值范圍;
(3)當
時,函數(shù)
的圖象與
軸交于兩點
,且
,又
是
的導函數(shù).若正常數(shù)
滿足條件
,證明:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
,其中
是自然對數(shù)的底數(shù).
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間和極值;
(Ⅱ)若函數(shù)
對任意
滿足
,求證:當
時,
;
(Ⅲ)若
,且
,求證:
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
的導函數(shù)
是二次函數(shù),當
時,
有極值,且極大值為2,
.
(1)求函數(shù)
的解析式;
(2)
有兩個零點,求實數(shù)
的取值范圍;
(3)設(shè)函數(shù)
,若存在實數(shù)
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若函數(shù)
有六個不同的單調(diào)區(qū)間,則實數(shù)
的取值范圍是____________ .
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
函數(shù)
的最小值為______.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
函數(shù)
在區(qū)間
上單調(diào)遞增,則
的取值范圍是( )
查看答案和解析>>