【題目】下列命題正確的是( )
A.若p∨q為真命題,則p∧q為真命題
B.“a>0,b>0”是“ ≥2”的充要條件
C.命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x+2≠0”
D.命題p:x∈R,x2+x-1<0,則﹁p:x∈R,x2+x-1≥0

【答案】D
【解析】若p∨q為真命題,則p,q中至少有一個(gè)為真,那么p∧q可能為真,也可能為假,故A錯(cuò);若a>0,b>0,則 ≥2,又當(dāng)a<0,b<0時(shí),也有 ≥2,所以“a>0,b>0”是“ ≥2”的充分不必要條件,故B錯(cuò);命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1且x≠2,則x2-3x+2≠0”,故C錯(cuò); 所以答案是:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解復(fù)合命題的真假的相關(guān)知識(shí),掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)南宋時(shí)期的數(shù)學(xué)家秦九韶在他的著作《數(shù)書九章》中提出了計(jì)算多項(xiàng)式f(x)=anxn+an﹣1xn﹣1+…+a1x+a0的值的秦九韶算法,即將f(x)改寫成如下形式:f(x)=(…((anx+an﹣1)x+an﹣2)x+…+a1)x+a0 , 首先計(jì)算最內(nèi)層一次多項(xiàng)式的值,然后由內(nèi)向外逐層計(jì)算一次多項(xiàng)式的值,這種算法至今仍是比較先進(jìn)的算法,將秦九韶算法用程序框圖表示如圖,則在空白的執(zhí)行框內(nèi)應(yīng)填入( 。

A.v=vx+ai
B.v=v(x+ai
C.v=aix+v
D.v=ai(x+v)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合U={1,2,…,100},TU.對(duì)數(shù)列{an}(n∈N*),規(guī)定:
①若T=,則ST=0;
②若T={n1 , n2 , …,nk},則ST=a +a +…+a
例如:當(dāng)an=2n,T={1,3,5}時(shí),ST=a1+a3+a5=2+6+10=18.
已知等比數(shù)列{an}(n∈N*),a1=1,且當(dāng)T={2,3}時(shí),ST=12,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=2cosθ+2sinθ(0≤θ<2π),點(diǎn)M(1, ),以極點(diǎn)O為原點(diǎn),以極軸為x軸的正半軸建立平面直角坐標(biāo)系.已知直線l: (t為參數(shù))與曲線C交于A,B兩點(diǎn),且|MA|>|MB|.
(1)若P(ρ,θ)為曲線C上任意一點(diǎn),求ρ的最大值,并求此時(shí)點(diǎn)P的極坐標(biāo);
(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐P﹣ABC中,△ABC是正三角形,△ACP是直角三角形,∠ABP=∠CBP,AB=BP.

(1)證明:平面ACP⊥平面ABC;
(2)若E為棱PB與P不重合的點(diǎn),且AE⊥CE,求AE與平面ABC所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,若 ,且 對(duì)任意的 恒成立,則 的最大值為( )
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】所謂正三棱錐,指的是底面為正三角形,頂點(diǎn)在底面上的射影為底面三角形中心的三棱錐,在正三棱錐 中, 的中點(diǎn),且 ,底面邊長(zhǎng) ,則正三棱錐 的體積為 , 其外接球的表面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓 經(jīng)過 為坐標(biāo)原點(diǎn),線段 的中點(diǎn)在圓 上.
(1)求 的方程;
(2)直線 不過曲線 的右焦點(diǎn) ,與 交于 兩點(diǎn),且 與圓 相切,切點(diǎn)在第一象限, 的周長(zhǎng)是否為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,島 相距 海里.上午9點(diǎn)整有一客輪在島 的北偏西 且距島 海里的 處,沿直線方向勻速開往島 ,在島 停留 分鐘后前往 市.上午 測(cè)得客輪位于島 的北偏西 且距島 海里的 處,此時(shí)小張從島 乘坐速度為 海里/小時(shí)的小艇沿直線方向前往 島換乘客輪去 市.

(Ⅰ)若 ,問小張能否乘上這班客輪?
(Ⅱ)現(xiàn)測(cè)得 , .已知速度為 海里/小時(shí)( )的小艇每小時(shí)的總費(fèi)用為( )元,若小張由島 直接乘小艇去 市,則至少需要多少費(fèi)用?

查看答案和解析>>

同步練習(xí)冊(cè)答案