(14分)已知圓過(guò)點(diǎn)且與圓M:關(guān)于直線對(duì)稱
(1)判斷圓與圓M的位置關(guān)系,并說(shuō)明理由;
(2)過(guò)點(diǎn)作兩條相異直線分別與圓相交于、
①若直線與直線互相垂直,求的最大值;
②若直線與直線與軸分別交于、,且,為坐標(biāo)原點(diǎn),試判斷直線與是否平行?請(qǐng)說(shuō)明理由.
(1) 圓M與圓C外切,理由略
(2) ①、被圓所截得弦長(zhǎng)之和的最大值為4
②直線和一定平行,理由略。
【解析】解:(1)設(shè)圓心,則,解得
則圓的方程為,將點(diǎn)的坐標(biāo)代入得,故圓的方程為
,又兩半徑之和為,圓M與圓C外切.
(2) ①設(shè)、被圓所截得弦的中點(diǎn)分別為,弦長(zhǎng)分別為,因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052021354148439442/SYS201205202137347968566004_DA.files/image018.png">是矩形,所以,即
,化簡(jiǎn)得
從而,(時(shí)取等號(hào),此時(shí)直線PA,PB必有一條斜率不存在)綜上: 、被圓所截得弦長(zhǎng)之和的最大值為4
另解:若直線PA與PB中有一條直線的斜率不存在,
則PA=PB=2,此時(shí)PA+PB=4.
若直線PA與PB斜率都存在,且互為負(fù)倒數(shù),故可設(shè),即
,() 點(diǎn)C到PA的距離為,同理可得點(diǎn)C到PB的距離為,
<16,)
綜上:、被圓所截得弦長(zhǎng)之和的最大值為4
②直線和平行,理由如下:
由題意知, 直線和直線的斜率存在,且互為相反數(shù),故可設(shè),
,由,得
因?yàn)辄c(diǎn)的橫坐標(biāo)一定是該方程的解,故可得
同理,,
所以=
所以,直線和一定平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
4 |
3
| ||
5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)直線l過(guò)點(diǎn)P(1,2),且與圓C交于A、B兩點(diǎn),若|AB|=,求直線l的方程;
(2)過(guò)圓C上一動(dòng)點(diǎn)M作平行于x軸的直線m,設(shè)m與y軸的交點(diǎn)為N,若向量,求動(dòng)點(diǎn)Q的軌跡方程,并說(shuō)明此軌跡是什么曲線.
(文)(本小題共13分)已知圓C的方程為x2+y2=4.
(1)直線l過(guò)點(diǎn)P(1,2),且與圓C交于A、B兩點(diǎn),若|AB|=,求直線l的方程;
(2)圓C上一動(dòng)點(diǎn)M(x0,y0),=(0,y0),若向量,求動(dòng)點(diǎn)Q的軌跡方程,并說(shuō)明此軌跡是什么曲線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com