【題目】在一次體育興趣小組的聚會中,要安排人的座位,使他們在如圖所示的個椅子中就坐,且相鄰座位(如, )上的人要有共同的體育興趣愛好.現(xiàn)已知這人的體育興趣愛好如下表所示,且小林坐在號位置上,則號位置上坐的是( )

小林

小方

小馬

小張

小李

小周

體育興趣愛好

籃球,網(wǎng)球,羽毛球

足球,排球,跆拳道

籃球,棒球,乒乓球

擊劍,網(wǎng)球,足球

棒球,排球,羽毛球

跆拳道,擊劍,自行車

A. 小方 B. 小張 C. 小周 D. 小馬

【答案】A

【解析】重新整理,籃球:小林,小馬; 網(wǎng)球:小林,小張;

羽毛球:小林,小李; 足球:小方,小張;

排球:小方,小李; 跆拳道:小方,小周;

棒球:小馬,小李; 擊劍:小周,小張

乒乓球:小馬; 自行車:小周

由于小周的自行車與小馬的乒乓球沒有共同興趣愛好者,所以小周兩邊一事實上是跆拳道與擊劍的,小馬兩邊只能是棒球與籃球的。即小馬與小林一定相鄰,所以1號位是小林,2 號位一定是小馬,3號位就是棒球的小李。小周與小張及小方一定相鄰,所以小周坐5號位。

3號位角度,4號位只能是排球和羽毛球(小林,不可能),所以是排球小方。6號位小張。選A.

1

2

3

4

5

6

1

小林

小馬

小李

小方

小周

小張

小林

/籃球

籃球/棒球

棒球/排球

排球/跆拳道

跆拳道/擊劍

擊劍/網(wǎng)球

網(wǎng)球

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市對創(chuàng)“市級優(yōu)質(zhì)學(xué)!钡募、乙兩所學(xué)校復(fù)查驗收,對辦學(xué)的社會滿意度一項評價隨機訪問了位市民,根據(jù)這位市民對這兩所學(xué)校的評分(評分越高表明市民的評價越好),繪制莖葉圖如下:

(1)分別估計該市的市民對甲、乙兩所學(xué)校評分的中位數(shù);

(2)分別估計該市的市民對甲、乙兩所學(xué)校的評分不低于分的概率;

(3)根據(jù)莖葉圖分析該市的市民對甲、乙兩所學(xué)校的評價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的側(cè)棱PD⊥底面ABCD,且底面ABCD是直角梯形,AD⊥CD,AB∥CD,AB=AD= CD=2,點M在側(cè)棱上.
(1)求證:BC⊥平面BDP;
(2)若側(cè)棱PC與底面ABCD所成角的正切值為 ,點M為側(cè)棱PC的中點,求異面直線BM與PA所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,A,B兩點5條連線并聯(lián),它們在單位時間內(nèi)能通過的最大信息量依次為2,3,4,3,2.現(xiàn)記從中任取三條線且在單位時間內(nèi)都通過的最大信息總量為ξ,則P(ξ≥8)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還升, 升, 升,1斗為10升,則下列判斷正確的是( )

A. , , 依次成公比為2的等比數(shù)列,且

B. , , 依次成公比為2的等比數(shù)列,且

C. , 依次成公比為的等比數(shù)列,且

D. , , 依次成公比為的等比數(shù)列,且

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,李先生家住H小區(qū),他工作在C科技園區(qū),從家開車到公司上班路上有L1、L2兩條路線,L1路線上有A1、A2、A3三個路口,各路口遇到紅燈的概率均為 ;L2路線上有B1、B2兩個路口,各路口遇到紅燈的概率依次為

(1)若走L1路線,求最多遇到1次紅燈的概率;
(2)若走L2路線,求遇到紅燈次數(shù)X的數(shù)學(xué)期望;
(3)按照“平均遇到紅燈次數(shù)最少”的要求,請你幫助李先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(選修4﹣5:不等式選講)
已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當(dāng)a=﹣2時,求不等式f(x)<g(x)的解集;
(2)設(shè)a>﹣1,且當(dāng) 時,f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b均大于0,且 + =1.求證:對于每個n∈N* , 都有(a+b)n﹣(an+bn)≥22n﹣2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,E,F(xiàn)分別是A1B,A1C的中點,點D在B1C1上,A1D⊥B1C.求證:

(1)EF∥平面ABC;
(2)平面A1FD⊥平面BB1C1C.

查看答案和解析>>

同步練習(xí)冊答案