已知關于x方程log2(x-1)+k-1=0在區(qū)間[2,5]上有實數(shù)根,那么k的取值范圍是______.
關于x方程log2(x-1)+k-1=0,即 log2(x-1)=1-k.
當2≤x≤5時,0≤log2(x-1)≤2,
∴0≤1-k≤2,求得-1≤k≤1,
故答案為[-1,1].
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log
1
2
x
與函數(shù)g(x)的圖象關于y=x對稱,
(1)若g(a)g(b)=2,且a<0,b<0,則
4
a
+
1
b
的最大值為
-9
-9

(2)設f(x)是定義在R上的偶函數(shù),對任意的x∈R,都有f(2-x)=f(x+2),且當x∈[-2,0]時,f(x)=g(x)-1,若關于x的方程f(x)-lo
g
(x+2)
a
=0(a>1)在區(qū)間(-2,6]內恰有三個不同實根,則實數(shù)a的取值范圍是
(
34
,2)
(
34
,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log2(2x+1).
(1)求證:函數(shù)f(x)定義域內單調遞增;
(2)記g(x)=log 2(2x-1).若關于x的方程g(x)=m+f(x)在[1,2]上有解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=log2(2x+1).
(1)求證:函數(shù)f(x)定義域內單調遞增;
(2)記g(x)=log數(shù)學公式.若關于x的方程g(x)=m+f(x)在[1,2]上有解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=log2(2x+1).
(1)求證:函數(shù)f(x)定義域內單調遞增;
(2)記g(x)=log 2(2x-1).若關于x的方程g(x)=m+f(x)在[1,2]上有解,求m的取值范圍.

查看答案和解析>>

同步練習冊答案