如圖,某自來水公司要在公路兩側(cè)排水管,公路為東西方向,在路北側(cè)沿直線排水管,在路南側(cè)沿直線排水管(假設(shè)水管與公路的南,北側(cè)在一條直線上且水管的大小看作為一條直線),現(xiàn)要在矩形區(qū)域ABCD內(nèi)沿直線EF將與接通.已知AB = 60m,BC = 60m,公路兩側(cè)排管費(fèi)用為每米1萬元,穿過公路的EF部分的排管費(fèi)用為每米2萬元,設(shè)EF與AB所成角為.矩形區(qū)域內(nèi)的排管費(fèi)用為W.
(1)求W關(guān)于的函數(shù)關(guān)系式;
(2)求W的最小值及相應(yīng)的角.
(1);(2),.
解析試題分析:(1)過E作,垂足為,然后將用,再根據(jù)題意列出W關(guān)于的函數(shù)關(guān)系式,化簡(jiǎn)即得;(2)設(shè),,再對(duì)其求導(dǎo),通過導(dǎo)函數(shù)確定在的單調(diào)性,從而得到該函數(shù)的最大值以及取得最大值時(shí)相應(yīng)的角,代入中,即得到W的最小值.
試題解析:(1)如圖,過E作,垂足為,由題意得,
故有,, ,
所以W=.
即 . 6分
(2)設(shè),
則.
令得,即,得.
列表
所以當(dāng)時(shí)有,此時(shí)有.+ 0 - 單調(diào)遞增 極大值 單調(diào)遞減
答:排管的最小費(fèi)用為萬元,相應(yīng)的角. 13分
考點(diǎn):1.三角函數(shù);2.用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;3.利用單調(diào)性求最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題13分)己知函數(shù)。
(1)試探究函數(shù)的零點(diǎn)個(gè)數(shù);
(2)若的圖象與軸交于兩點(diǎn),中點(diǎn)為,設(shè)函數(shù)的導(dǎo)函數(shù)為, 求證:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在上是增函數(shù),上是減函數(shù).
(1)求函數(shù)的解析式;
(2)若時(shí),恒成立,求實(shí)數(shù)m的取值范圍;
(3)是否存在實(shí)數(shù)b,使得方程在區(qū)間上恰有兩個(gè)相異實(shí)數(shù)根,若存在,求出b的范圍,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的導(dǎo)函數(shù)是,在處取得極值,且.
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區(qū)間上的最大值為,若對(duì)任意的總有成立,求的取值范圍;
(Ⅲ)設(shè)是曲線上的任意一點(diǎn).當(dāng)時(shí),求直線OM斜率的最小值,據(jù)此判斷與的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(I)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求證:
(Ⅲ)若函數(shù)的圖象在點(diǎn)處的切線的傾斜角為,對(duì)于任意的,函數(shù)是的導(dǎo)函數(shù))在區(qū)間上總不是單調(diào)函數(shù),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若當(dāng)時(shí)恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在處的切線方程;
(Ⅱ)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若在上存在一點(diǎn),使得<成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),(,為自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)對(duì)任意的,恒成立,求的最小值;
(3)若對(duì)任意給定的,在上總存在兩個(gè)不同的,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)是R上的奇函數(shù),當(dāng)時(shí)取得極值.
(I)求的單調(diào)區(qū)間和極大值
(II)證明對(duì)任意不等式恒成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com